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Abstract. In this project, we study the transport of sediment in the presence of a
turbulent river flow. After using Fusion 360 to design various different fluid domains,
we utilize COMSOL to solve the k-ε turbulence model, using particle tracers to track
in-flow sediment. Geometries include a 2D section of a winding river and a winding river
with obstacles, to simulate the scenario of river rapids. The results of these simulations
intimate that, in the cases shown, the effect of river rapids on the dispersion and depo-
sition of sediment was negigible. Simulations with obstacles, despite minor fluctuations,
settle into similar velocity, vorticity, and particle trajectory profiles.
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1. Introduction

The transportation of sediment in bodies of water, such as rivers, can lead to erosion,
contaminant transport (due to adjacent industrial activity), and negatively impact the
ecosystem of associated organisms ([2]). A lack of transport and resulting sediment
deposition can cause a deficiency in essential nutrients, an absence of viable cover from
predators, and erosion. Conversely, too much transport and deposition can lead to the
covering of underwater habitats, waterway deformation, light prevention, and the clogging
of fish gills (see [4] for more details on all of the above).

Thus, the analysis of sediment transport is of great importance and interest. Obtaining
reliable numerical results can be extremely difficult. The varied, rough geometry of a
river typically induces a turbulent flow, especially in sharply-angled, winding rivers or
rapids. Coupling flow and erosion is an additional difficulty; see [3]. Most study in the
mathematical community is based on developing numerical techniques or river models
(e.g. [1]-[3]), whereas we will use COMSOL, which is based on finite element methods,
to solve our problem on specified geometry with the proper type of physics and will
discuss quantitative results. For our purposes, we will be neglecting bed evolution, instead
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studying the general fluid flow and using particle tracers to understand the dispersion
of in-flow sediment under the flow’s evolution. This will be done for various types of
geometries. The original goal was to perform 3D simulations for a winding river with
a varying bed profile. This goal proved unattainable in the time required, as will be
discussed. Consequently, we considered 2D flow for a winding river, as well as a winding
river with obstacles, which we used to model river rapids. Here, the goal became to
contrast the case of no obstacles versus obstacles. We will begin by discussing the 3D
problem and its pitfalls before proceeding to the 2D results.

1.1. Preliminaries. In this section, we will discuss everything from the 3D perspective.
We will be concerned with solving for the flow, which is typically modeled via the incom-
pressible Navier-Stokes equations. That is, we take u : Ω̄ × [0,∞) → R3, p : Ω̄ → R to
solve {

ρ(∂tu+ (u · ∇)u)− ν∆u+∇p = f,

∇ · u = 0,
,

subject to an appropriate initial condition and boundary conditions (commonly, one uses
the no-slip boundary condition, u

∣∣
∂Ω

= 0), where Ω ⊂ R3 is open and bounded (say with,
at least, Lipschitz boundary), ρ is fluid density, u is velocity, p is pressure, ν is kinematic
viscosity, and f is the volume force.

It is worth noting that many river models, instead, use the shallow water equations.
In such a scenario, the vertical length scale is significantly smaller than the horizontal
length scale. Conservation of mass implies that the vertical velocity must scale negligibly,
justifying a vertical hydrostatic approximation and analysis of a different set of equations
in 2 space dimensions. While this is also the situation in our model, COMSOL does not
directly implement the shallow water equations (one can use the general PDE interface,
but we prefer to use the built-in models, as they are more robust). However, this line of
thinking provides some justification for considering 2D models.

The turbulence is characterized by the Reynolds number, which is a ratio of inertial
forces to external forces:

Re =
ρUL

µ
=
uL

ν
,

where ρ is the density of the fluid, U is the characteristic velocity of the flow (relative to
the boundary layer), L is the characteristic length scale of flow, µ is the dynamic viscosity
of the fluid. Large Reynolds numbers correspond to turbulent regimes, which leads to
various instabilities in the flow; what “large” means is dependent on the context. In fact,
the Navier-Stokes equations exhibit both hyperbolic and parabolic behavior, and the size
of the Reynolds number can dictate which regime is more prevalent.

COMSOL offers a variety of turbulence models for incompressible flows and com-
pressible, low Mach number flows (Ma < 0.3). Each turbulence model is based on the
Reynolds-averaged Navier Stokes equations (RANS), which averages the velocity and
pressure fields in time. If we let U and P denote time-averaged velocity and pressure,
then the RANS equations are

ρ((U · ∇)U) + (νT − ν)∆U +∇P = f,

where νT is the turbulence viscosity. The turbulence model that we will choose is called
the k-ε turbulence model, one of the most popular in CFD. This model solves for the
variables k and ε, where k is the turbulence kinetic energy and ε is its rate of dissipation.
It is notable for possessing a strong convergence rate and inexpensive memory demands.
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These equations take the form

ρ(∂tk + (u · ∇)k)−
(
ν +

νt
σk

)
∆k = pk − ρε

ρ(∂tε+ (u · ∇)ε)−
(
ν +

νt
σε

)
∆k = Cε,1

ε

k
pk − Cε,2ρ

ε2

k
,

νt = ρCν
k2

ε

where σk, σε, Cε,1, Cε,2, Cν are adjustable constants, and pk = 2νtTr STS, and S = ∇u is
the strain-rate tensor.

2. Methods

2.1. Domain Construction. We will discuss the creation of 3D geometries, since do-
mains in 2D were simply obtained by projecting onto the xy plane. All geometries were
designed in Fusion 360. We will provide the workflow for our working problem, a section
of hypothetical river that features horizontal winding with a varying bed profile. The
section is 200 meters in the y direction, 30 meters in the x direction, and the height
varies, but 0.5-1 meters deep to start, with up to an additional [0.5, 1] 3 z̃ meters of
variance in the negative z direction. Our process follows this procedure:

1. Create Horizontal Cross-Section: First, we create a sketch in the xy-plane.
Using a control-point spline, we create a curve with the winding that we desire that is
200 meters in length. Then, we translate this curve in the x direction by 30 meters while
keeping the original copy, guaranteeing that the width is 30 meters throughout. Next,
we attach the corresponding endpoints, closing the sketch. From here, we extrude this
planar object, and the height does not matter significantly (as long as it is a few meters
high, so one does not need to worry about it being too high).

2. Create Bed Profile: Once again, we create a sketch in the yz-plane. There are
two ways that we might do this. The first one: We use a control-point spline to generate a
curve with the features we want, also 200 meters in length (in the y direction). Switching
over to the patch environment, we extrude this curve to obtain a curved surface (it is
important to make sure that the distance that one extrudes is larger that 30 meters, as
will be seen shortly). The second option: We do the same, then we add straight line with
the same length in the y direction, but 1 meter above. We connect the corresponding
endpoints with lines, then we extrude this. Regardless of the option, the spline should
have extremely minor variance in comparison to the z scale, making it somewhat difficult
to obtain a nice profile, if one draws the entire curve at once. Instead, we draw for only
a fraction of the 200 meters required, then (keeping the old copies) translate the curve
until we get to 200 meters. Then, we proceed as above.

3. Splitting: Now that we have our surfaces, we move the curved surface or extruded
surface sufficiently in the positive z direction (so that the top half of the split body has
the appropriate depth average), then use the split body command to split our first object.
This gives us our domain.
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Here is a more precise workflow for a particular example, with accompanying figures
in the “Figures” section. Figure 1 depicts steps 1-4, figure 2 shows steps 5-10, and figure
3 for steps 11-13.

(1) Create a sketch in the xy-plane
(2) Draw control point spline, with distance 200 in the y direction.
(3) Keeping the old copy, translate in the x direction by 30 meters, then connect the

corresponding endpoints.
(4) Extrude the resulting sketch 2 meters in the z direction.
(5) Create a new sketch in the yz plane.
(6) Draw another control point spline, with distance 100 in the y direction and vari-

ance between 0 and 1 meter in the z direction.
(7) Keeping the old copy, translate in the y direction by 100 meters.
(8) Change the environment from “Model” to “Patch.”
(9) Extrude either the entire second sketch, say, 50 meters in x direction (symmetri-

cally), or each line individually and stitch the resulting curved surfaces (does not
matter which option).

(10) Translate this curved surface 1 meter in the z direction.
(11) Move back to the ”Model” environment.
(12) Under “Modify”, choose “Split Body,” where the body to split is the first body,

and the splitting tool is the second body (the curved surface).
(13) Hide all resulting bodies, except the first (which is the top portion of the original

first body).
As stated, our 3D domain yields our 2D domain by xy projection, which is 200 meters
in length and 30 meters in width. Our second domain, with obstacles, was obtained
in COMSOL. Here, we excised 24 circles with a radius of 1 meter by placing them on
our domain in the desired spots and taking the symmetric difference with the original
domain. Figure 4 depicts our domains, as imported into COMSOL. For the remainder of
this section, the problem with the domain without obstacle will be called “Problem A,”
and the problem for the domain with obstacles will be called “Problem B.” Note that the
domain with the prescribed dimensions, a set temperature of 68◦ F, and other standard
properties of water will induce a turbulent regime, with Re≈6e7 at the mouth of the river
when the inflow ramps up to its maximum of 2 m/s.

2.2. COMSOL Implementation. In COMSOL, we attempted to use the turbulence
module in 3D and utilized both the turbulence and particle tracing modules in 2D. We
will discuss only the 2D set-up, as the turbulence set-up is analogous for 3D. The process
is outlined in the flow-chart in Figure 5, and it will make references to edges in figure 4.

In 2D, we first solved for the flow with the turbulence model, then used this solution
for the particle tracing. We will provide the general steps for solving Problem A, as
Problem B is entirely analogous, with obvious boundary conditions on the boundaries
of the disks. To summarize the set-up, we imported our domain and set the material of
the domain to be water. For the turbulence, we set the water to be at rest. We chose
an inlet on the far left edge from Figure 4(a) and utilized a ramp function with a slope
of 2, to avoid discontinuities in the flow. The outlet was on the far right, and it had a
zero pressure condition, with backflow suppressed (default). All other boundaries had
no-slip wall conditions. For the particle tracing, we chose solid particles with a density
of 2200 kg/m3, with a diameter of 1 µm (defaults). We used standard drag correlations
for the drag force, with the velocity given by the velocity field of the flow. We had an
inlet condition on the same edge as previous, where 15 particles were released every 10
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seconds for 150 seconds, with initial velocity given by the flow. An outlet condition on the
same edge as before was also used, where the particles would disappear. All other edges
had a wall condition, where particles had a 50% chance to bounce and a 50% chance to
stick. Both problems were solved for 150 seconds, with output every second. As stated
previously, the turbulence model was solved first, then the velocity field was used for the
particle tracing. After completing these simulations, we performed our post-processing
in COMSOL, as well. This was comprised of five features, velocity magnitude over the
domain with both a high and low upper bound, vorticity magnitude, streamlines, and
particle trajectories. These will be discussed more in-depth in the subsequent sections.

3. Results and Discussion

3.1. 3D Failures. In 3D, we attempted to implement the steps of the previous section to
the geometry in Figure 3 without coupled particle tracing, which we planned to perform in
post-processing. However, this problem did not prove to be tractable. Despite utilizing
Longleaf to run simulations on their big data nodes, results would fail either in the
stationary portion or very early in the time-dependent solver, or I would even not reach
these stages in 5 days of runtime. In this process, we varied the mesh from normal to
extra fine and the solver from iterative to direct. There are a few likely culprits in this
failure:

(1) Domain: While the domain was not very complicated, it was extremely large
(horizontally), and 3D. This made the problem to solve very large. The large
discrepancy in vertical versus horizontal scaling led to a requirement of a very
fine mesh in order to hope for convergence, which added to the computational
intensity.

(2) Turbulence: Turbulence is a very difficult and expensive computation in general.
The size of the domain led to a very large Reynolds number, causing our regime
to be highly turbulent. The thinness of our domain can mathematically lead to
chaotic behavior, which can physically manifest as added turbulence.

For these reasons, we switched to a 2D model.

3.2. 2D Successes. As stated in the COMSOL implementation, we examined five quan-
tities to discern key characteristics of the flow and attempt to solve our problem in some
meaningful way. All of these will be provided as plots which are superimposed on the
geometry at a given time slice. Figures 6-7 (resp. 8-9) are plots of the velocity mag-
nitude, with a moderate (resp. low) upper bound. The moderate upper bound gives a
more well-rounded overview of the velocity of the fluid, since higher upper bounds tend
to blend too much of the flow together. Low velocity is useful to demonstrate the dis-
persion of the fluid, which starts at rest. The next quantity extracted was the vorticity
magnitude, which also helps capture dispersion and general behavior of the flow. For a
similar reason, we plotted streamlines as our fourth component. Finally, we will provide
the particle tracing results. As stated earlier, simulations were run for 150 seconds. We
will begin by describing the case of no obstacles, then move on to the obstacle case, where
we will contrast with the former.

3.2.1. No Obstacles. The first portion of results are related to velocity with a moderate
upper bound. Here, the magnitude ranged from 0 m/s to an 8 m/s (that is, the upper
bound on the color bar is 8), although the actual flow is contained in [0, 10.37881] m/s,
with minimum 0.01568 m/s after 150 seconds. The relevant figures are contained in
Figures 6-7. It is worth noting that the peak velocity from the inlet is 2 m/s, meaning
that the velocity increases by, time, more than a factor of 5. Due to the winding nature,
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the velocity reaches its peak adjacent to the wall shortly after the strong turn in the
middle of the figure. Note that by 133 seconds, the flow has settled into a fixed profile.
We are most interested in behavior in this regime, as this is when we see the true profile
of the river for an inlet with a constant inflow of 2 m/s. Various subfigures feature re-
circulation, due to portions of the fluid striking the boundaries (see Time=16, 33, and 50
seconds).

Due to the high upper bound on this figure, it is not clear how well-dispersed the
flow from the inlet becomes. For the velocity plots with a low velocity upper bound,
we placed the maximum at 0.2 m/s. The accompanying figures are Figures 8-9. These
intimate that the fluid has dispersed through the entire domain, which is not apparent
from the earlier figures. For example Figures 6-7 does not clearly show that the velocity
has non-zero magnitude in the right corner at y = 80 m, whereas Figures 8-9 indicate
that, except for a near-singular neighborhood in the middle, the velocity is 0.2 m/s or
more in magnitude (by singular neighborhood, we mean a neighborhood of a singular
point, and analogous for near-singular). Almost certainly, this neighborhood contains
a single singular point, but this is not picked up due to the discreteness of the domain
(i.e. due to the lack of continuity in computing). Hence, we will call this neighborhood a
singular neighborhood and the point a singularity. The only other singular neighborhood
of the flow is the strip from approximately y = 110 to y = 190, with x between 0 and 20
(again, approximately). Once again, it is likely that these all represent fixed points of the
flow. We will refer to the entire strip as singular, although it appears to be comprised of
discrete set of singularities (here, when we say discrete, we mean finite). Figures 12-13
help explain this phenomena. Observing the streamlines in the last two frames of Figure
13, we can see that, first, the flow has indeed settled into a set profile. In particular,
we can see that there is rotation about these singularities, although the precise type
is unclear, as is the stability. We can also see the evolution of fluid lobes exhibiting
rotational behavior in this figure, although figure. Figures 10-11 demonstrate this much
more clearly. For example, we can see shortly after the fluid strikes the winding portion
of the boundary in the middle, a vortex breaks off and propels upwards. Then, it strikes
the wall a second time and re-circles downward. The profile of vorticity of the flow settles
similar to that of the velocity. This behavior is seen to affect the particles in Figures 14-
15, where they re-circulate throughout the domain after hitting these areas. They follow
the flow fairly orderly, with bouncing having a fairly minimal effect, with one exception;
striking the boundary towards the top left of the domain often leads to re-circulation, as
particles enter the area near the singular strip. Since the particles follow the streamlines
(unless there is boundary collision) and all particles enter from the inlet, no particles
enter into the corner near (40, 82) (no collision will allow a particle to enter here, based
on the streamline behavior), and this will not change will the addition of more particles.
Hence, particle trajectories are non-dense in the domain. Finally, note that once the flow
has settled, there re-circulation still occurs.

3.2.2. Obstacles. Let us call the case of no obstacles “NO,” for convenience. All of the
corresponding figures are directly below those for the NO case (Figures 16-25). In the case
of the introduction of obstacles, the magnitude of the velocity reached as high as 11.68275
m/s, faster than in the NO case, despite the same initial values and inlet condition. The
peak of the magnitude occurs around obstacles in the same region as the other case. While
the obstacles in the top right of the domain prevent the flow profile from settling fully
in that region, the general profile settles much faster than in the NO case. Furthermore,
it settles into a very similar profile, with the main differences being small fluctuations
caused by obstacles in path of the primary current. The singular strip featured previously
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is disconnected by the obstacles in that region, leading to increasingly disjoint singular
neighborhoods about many of the same fixed points. The main vortex shown previously in
the vorticity plots is fractured earlier before it makes contact with the wall boundary here,
due to the obstacles. Further, each obstacle induces an area of high vorticity in its wake.
The peak vorticity is much higher in this case; the maximum vorticity magnitude here
is approximately 64.67013 1/s, while it is approximately 34.53654 1/s in the NO case.
In the O case, this occurs on the boundary of an obstacle around the point (15,110),
whereas in occurs on bank above the sharpest wind in the river in the NO case, near
the point (20,85). Despite this, the general values of the vorticity are consistent, and
the vorticity still “settles” in analogous to that of the NO case, just as with their speeds.
The streamlines corroborate the conclusions drawn from the velocity and vorticity plots.
Since the vortex was broken up earlier, this leads less time for particles have a chance
to re-circulate, which is supported by the particle trajectories. Far fewer particles re-
circulate, but like previously, this does not completely stop once the flow profile becomes
more settled. Additionally, particles still get captured by the singular neighborhoods,
leading to a similar amount of deposition.

3.3. Summary of 2D Comparisons and Conclusions. Let us summarize the com-
parisons made in the previous sections between the no obstacle (“NO”) and obstacle (“O”)
cases. In studying their velocities, we saw that both profiles generally settled, with the
NO case being more settled and the O case, generally, settling faster. The speeds were
similar, with the speed reaching higher maximum values in the O case, which occurred
as the fluid passed obstacles. The inlet flow dispersed well throughout the domain, with
the exception of a discrete set of fixed points, in each case. In the O case, the velocity
surrounding the singularities in the top left of the domain increased to the mean more
quickly. Their vorticity profiles were analogous in the same sense as the velocity profiles.
Once again, the O case had a higher maximum magnitude, which occurred on the bound-
ary of the obstacles. Their streamlines told a similar story, although they were “tighter”
in the O case, due to the need to avoid collision with the obstacles. Finally, in the case
of particle tracing, the obstacles did not have a significant effect in terms of aiding in
the dispersion of the particles. More re-circulation actually occurred in the NO case, as
the obstacles accelerated the breaking of a large vortex, preventing particles from being
manipulated by it, unlike in the NO case. In both cases re-circulation does not completely
stop once the flow has settled. Furthermore, a similar amount of particles got caught by
the singular neighborhoods of the flow in the top right of the geometry, meaning that
deposition was comparable. These observations support the conclusion that, in our sim-
ulations, the obstacles did not have a significant impact on the dispersion or deposition
of particles.

3.4. Future Work. There are numerous avenues of future work. The most obvious,
given the initial goal of the problem, it is extend to 3D simulations. After seeing the
steps required to work on a 2D model, an extension to the harder case seems more
attainable. It may be more effective to use something other than COMSOL, though, as
it is likely not optimized to handle such a problem. Another idea is to actively track
erosion. COMSOL possesses this feature in their particle tracing module, but I did not
get a chance to learn how to use it properly. This would yield a much more realistic
representation of the scenario. For added realism, one could use actual data to model the
river (the dimensions, the velocity, the temperature, etc.). One last concept would be to
model forming a river into an estuary. Since estuaries have higher salinity, it would be
interesting to see how this affects the flow.

7



4. Figures

(a) (b)

Figure 1. Figures for steps 1-4: (a) control-point-spline-based xy sketch,
(b) Extruded xy sketch

(a) (b)

Figure 2. Steps 5-10: (a) Curved surface resulting from control-point-
spline-based yz sketch, (b) Intersection of the two bodies after translating
the curved surface
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(a) (b)

Figure 3. Steps 11-13: (a) Overhead view of desired domain after splitting
is performed, (b) Underneath view of desired domain after splitting is per-
formed

(a) (b)

Figure 4. 2D domains: (a) No obstacles, (b) Obstacles
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Problem

Geometry: 200m by 30 m
Material: Water

Temperature: 68◦ F

Physics Turbulent FlowParticle Tracing

Initial Values:
u = (0, 0), p = 0

Initial Properties:
ρ = 2220 kg/m3

diam = 1 µm
Particles: Solid

Boundary Conditions:
Inlet- left edge,
ramp w/ slope 2

Outlet- right edge, p = 0,
suppressed backflow
Wall- all other
edges, no slip

Drag:
Draw law: standard

drag correlations
Velocity: from flow

Boundary Conditions:
Inlet- left edge, 15 par-
ticles every 10 sec, initial
velocity matches inflow

Outlet- right
edge, disappear

Wall- all other edges,
50% bounce, 50% stick

Mesh:
physics-controlled, finer

Study: time-dependent
Duration: 150 sec
Output: 1× per sec
Order: turbulence,
then particle tracing

Post-Processing:
-velocity magnitude
(high and low max)
-vorticity magnitude

-streamlines
-particle trajectories

Figure 5. Flow-chart of 2D COMSOL Implementation
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Figure 6. Velocity magnitude evolution over 150 s, no obstacles (moder-
ate upper bound of 8 m/s)
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Figure 7. Velocity magnitude evolution over 150 s, no obstacles (moder-
ate upper bound of 8 m/s)
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Figure 8. Velocity magnitude evolution over 150 s, no obstacles (low up-
per bound of 0.2 m/s)
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Figure 9. Velocity magnitude evolution over 150 s, no obstacles (low up-
per bound of 0.2 m/s)
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Figure 10. Vorticity magnitude evolution over 150 s, no obstacles
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Figure 11. Vorticity magnitude evolution over 150 s, no obstacles
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Figure 12. 35 streamlines superimposed over velocity magnitude evolu-
tion over 150 s, no obstacles
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Figure 13. 35 streamlines superimposed over velocity magnitude evolu-
tion over 150 s, no obstacles
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Figure 14. Particle trajectories superimposed over velocity magnitude
evolution over 150 s, no obstacles
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Figure 15. Particle trajectories superimposed over velocity magnitude
evolution over 150 s, no obstacles
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Figure 16. Velocity magnitude evolution over 150 s, obstacles (moderate
upper bound of 8 m/s)
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Figure 17. Velocity magnitude evolution over 150 s, obstacles (moderate
upper bound of 8 m/s)
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Figure 18. Velocity magnitude evolution over 150 s, obstacles (low upper
bound of 0.2 m/s)
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Figure 19. Velocity magnitude evolution over 150 s, obstacles (low upper
bound of 0.2 m/s)
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Figure 20. Vorticity magnitude evolution over 150 s, obstacles
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Figure 21. Vorticity magnitude evolution over 150 s, obstacles
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Figure 22. 35 streamlines superimposed over velocity magnitude evolu-
tion over 150 s, obstacles
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Figure 23. 35 streamlines superimposed over velocity magnitude evolu-
tion over 150 s, obstacles
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Figure 24. Particle trajectories superimposed over velocity magnitude
evolution over 150 s, obstacles
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Figure 25. Particle trajectories superimposed over velocity magnitude
evolution over 150 s, obstacles
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