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The Wave and Damped Wave Equations

Define

□ :=
∂2

∂t2
−∆, ∆ :=

3∑
j=1

∂2

∂x2j
.

The (homogeneous) wave and damped wave equations on R× R3:
□u = 0 □u+ a(x)∂tu = 0

u(0, x) = f(x) u(0, x) = f(x)

∂tu(0, x) = g(x) ∂tu(0, x) = g(x)

with a ∈ C∞
c (R3), a ≥ 0.
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Global Energy

Consider energy functional

E[u](t) :=
1

2

∫
|∂u|2 dx, ∂ = (∂t,∇x)

u solves wave equation =⇒ energy conservation
u solves damped wave equation =⇒ energy dissipation
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Local Energy Decay I

Although energy is conserved, it does decay within compact spatial sets. If
u solves wave equation, then

sup
j≥0

(
∥⟨x⟩−1/2∂u∥2L2(R+×{⟨x⟩≈2j}) + ∥⟨x⟩−3/2u∥2L2(R+×{⟨x⟩≈2j})

)
≲ E[u](0)

provided n ≥ 3. This is called an integrated local energy estimate.

Utility:
Scattering problems
Imply other useful measures of dispersion (Strichartz estimates,
pointwise decay estimates)
Can aid in obtaining long-time existence for nonlinear waves
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Local Energy Decay II

Define local energy norms

∥u∥LE := sup
j≥0

∥⟨x⟩−1/2u∥
L2
t,x

(
R+×{⟨x⟩≈2j}

)
∥u∥LE1 := ∥∂u∥LE + ∥⟨x⟩−1u∥LE

∥u∥LE∗ :=

∞∑
j=0

∥⟨x⟩1/2u∥
L2
t,x

(
R+×{⟨x⟩≈2j}

).
If u solves □u = f, then

∥u∥2LE1 ≲ E[u](0) + ∥f∥2LE∗ .

Full local energy decay (LED) estimate:

∥u∥LE1 + ∥∂u∥L∞L2 ≲ ∥∂u(0)∥L2 + ∥f∥LE∗+L1L2 .
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Geometric Obstructions

Key obstruction to LED:

Trapping: null geodesics stay in a compact set for all time
Example: black hole backgrounds
Trapping =⇒ no LED (Ralston 1969, Sbierski 2015)
Can recover weaker LED statements for certain types of trapping

Can we recover LED if we use damping to control the trapping?
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Geometric Control

Geometric control condition (GCC): every bounded null geodesic
intersects {a > 0} in finite time
Introduced by Rauch and Taylor (1975) to obtain exponential decay for
dissipative equations on compact product manifolds without boundary

Collin Kofroth (University of North Carolina at Chapel Hill)ORAM 2022 April 2, 2022 7 / 13



Geometric Setting

Modify original problem to
(R4, g) Lorentzian, sgn(g) = (−+++)

g asymptotically flat
∂t Killing
Damped wave operator P = Dαg

αβDβ + iaDt, with
a ∈ C∞

c (R3
x), a ≥ 0
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Key Results

Previous results (Bouclet and Royer 2014): LED holds for damped
waves satisfying GCC on stationary, asymptotically Euclidean
(product) manifolds Rt × Rn

x, n ≥ 3, i.e. metrics

g = −dt2 + gij(x)dx
i ⊗ dxj .

Example of non-product structure: Kerr space-time
New work (me): allow for full Lorentzian structure

Theorem
Let P be a stationary, AF, damped wave operator satisfying GCC. If ∂t is
uniformly time-like, then LED holds.
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Proof Structure

Combine arguments of Metcalfe, Sterbenz, and Tataru for waves on
non-trapping Lorentzian space-times (2020) and Bouclet and Royer

Prove LED in high, medium, and low time-frequency regimes for
Schwartz functions
Combine analysis, perform extension argument

Largely follow MST framework, except where trapping takes place; medium
frequencies (Carleman estimates) and low frequencies (elliptic estimates)
are unaffected by both trapping and damping
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High Frequencies

Trapping occurs at high frequencies, so this is what needs the most
modification from MST to avoid loss.

Theorem
Let P be a stationary, AF, damped wave operator satisfying GCC. If ∂t is
uniformly time-like, then the estimate

∥u∥LE1 + ∥∂u∥L∞L2 ≲ ∥∂u(0)∥L2 + ∥⟨x⟩−2u∥LE + ∥Pu∥LE∗+L1L2

holds.

Want to perform positive commutator argument; by microlocal methods,
must construct an escape function (and correction term)

Collin Kofroth (University of North Carolina at Chapel Hill)ORAM 2022 April 2, 2022 11 / 13



Escape Function Construction

Let p, s denote the principal symbols of the self, skew-adjoint parts of P .

Lemma
There exist q0,m ∈ S0, q1 ∈ S1, supported in |ξ| ≥ λ, so that

Hpq − 2isq + pm ≳ 1|ξ|≥λ⟨x⟩−2(|ξ|2 + τ2),

where q = τq0 + q1.

Constructing the symbols
1 On the characteristic set: construct q via factoring argument

Interior region: trapping!
Semi-bounded geodesics: use a version of GCC (BR)
Rest of the interior region

Exterior region: perturbation is small, use modified exterior estimates
for bootstrapping (MST)

2 On the elliptic set: construct m
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