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Abstract. We establish local energy decay for damped magnetic wave equations on stationary, asymptoti-
cally flat space-times subject to the geometric control condition. More specifically, we allow for the addition

of time-independent magnetic and scalar potentials, which negatively affect energy coercivity and may add
in unwieldy spectral effects. By asserting the non-existence of eigenvalues in the lower half-plane and res-

onances on the real line, we are able to apply spectral theory from the work of Metcalfe, Sterbenz, and

Tataru and combine with a generalization of prior work by the present author to extend the latter work and
establish local energy decay, under one additional symmetry hypothesis. Namely, we assume that either the

imaginary part of the magnetic potentials are uniformly small or, more interestingly and novelly, that the

damping term is the dominant principal term in the skew-adjoint part of the damped wave operator within
the region where the metric perturbation from that of Minkowski space is permitted to be large. We also

obtain an energy dichotomy if we do not prohibit non-zero real resonances. In order to make the structure

of the argument more cohesive, we contextualize the present work within requisite existing theory.
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1. Introduction

1.1. Background and Problem Set-Up. In this work, we will establish (integrated) local energy decay
for a broad class of damped wave equations on stationary, asymptotically flat space-times, including those
which possess magnetic and scalar potential terms. This generalizes the result of [Kof23], which lacked
potential terms and assumed that the damping was compactly-supported. The presence of the potentials
allow for interaction with the damping and the existence of both complex eigenvalues and real resonances
embedded in the continuous spectrum, all of which stand to inhibit local energy decay. We will discuss each
of these obstructions carefully. Along the way, we also establish an energy dichotomy when non-zero real
resonances are permissible.

To set up the problem which we will study, let (R4, g) be a Lorentzian manifold with coordinates (t, x) ∈
R× R3 and metric signature (−+++). We will consider damped wave operators of the form

P = 2A,g + iaDt + V, 2A,g = (Dα +Aα)g
αβ(Dβ +Aβ)
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where a, V, and the components of A are smooth and complex-valued; here, we are utilizing the notation
Dα = −i∂α, which should be interpreted as an operator. We will call A the magnetic potential, V the scalar
potential, and a the damping. If a ≡ 0, then we will simply refer to P as a wave operator. We will require
that P is asymptotically flat. More precisely, we first define the family of norms

|||h|||k =
∑
|α|≤k

∥∥∥⟨x⟩|α| ∂αh
∥∥∥
ℓ1jL

∞([0,T ]×Aj)
,

where Aj = {⟨x⟩ ≈ 2j} for j ≥ 0 denote inhomogeneous dyadic annuli, ∂ = (∂t,∇x) denotes the space-time

gradient, and ⟨x⟩ = (1 + |x|2)1/2 denotes the Japanese bracket of x. The notation A ≲ B indicates that
A ≤ CB for some C > 0, and the notation A ≈ B means that B ≲ A ≲ B. In the definition of the Aj ’s, we
require that these implicit constants are compatible to cover R3. We may now define the AF norm topology
via

∥(h,A, a, V )∥AF = |||h|||2 + |||⟨x⟩A|||1 + |||⟨x⟩ a|||1 +
∣∣∣∣∣∣∣∣∣⟨x⟩2 V ∣∣∣∣∣∣∣∣∣

0
.

Definition 1.1. We say that P is asymptotically flat if ∥(g −m,A, a, V )∥AF < ∞, and∥∥∥⟨x⟩|α| ∂αg
∥∥∥
ℓ1jL

∞([0,T ]×Aj)
≲α 1, |α| ≥ 3,∥∥∥⟨x⟩|α|+1

∂αA
∥∥∥
ℓ1jL

∞([0,T ]×Aj)
+

∥∥∥⟨x⟩|α|+1
∂αa

∥∥∥
ℓ1jL

∞([0,T ]×Aj)
≲α 1, |α| ≥ 2,∥∥∥⟨x⟩|α|+2

∂αV
∥∥∥
ℓ1jL

∞([0,T ]×Aj)
≲α 1, |α| ≥ 1,

where m denotes the Minkowski metric.

The latter conditions are placed to work in standard symbol classes, as opposed to those with limited
regularity. They extend the flavor of the estimate present in the definition of asymptotic flatness, but one
does not require summability over the differentiation indices.

We will primarily be interested in when P is stationary, which occurs when (g,A, a, V ) are independent
of t. In particular, ∂t is a Killing field for g when P is stationary. When P is a damped wave operator,
we will always assume that a is independent of t, a is non-negative for |x| ≤ 2R0, and a is positive on an
open subset of {|x| ≤ R0}. For |x| ≤ 2R0, the damping term in P behaves as typical viscous damping,
and we consider it as a general time-independent first-order perturbation term for |x| > 2R0. Further, we
will assume throughout ∂t, while dtt the constant time slices are uniformly space-like (i.e. dt is uniformly
time-like). The former condition implies an ellipticity condition on the terms in P which are independent
of Dt (see Section 1.2 for more), while the latter guarantees that g00 ≳ −1, allowing P to be reduced to a
normal form of g00 = −1.

Next, we introduce parameters that quantify various aspects of asymptotic flatness. Namely, we instantiate

• the parameters M0, R0 and c, which are such that

∥(g −m,A, a, V )∥AF ≤ M0, ∥(g −m,A, a, V )∥AF>R0
≤ c ≪ 1,

where the subscript denotes the restriction of the norm to {|x| > R0}. The parameter c should be
viewed as being fixed first, after which we find a suitable R0 for which the above holds.

• the sequence (cj)j≥log2 R0 of positive real numbers satisfying that

∥(g −m,A, a, V )∥AF (Aj)
≲ cj ,

∑
j

cj ≲ c,

where ∥·∥AF (Aj)
denotes the restriction of the AF norm to the dyadic region Aj . We may assume

without any loss of generality that the sequence is slowly-varying, i.e.

cj/ck ≤ 2δ|k−j|, δ ≪ 1.

The integers 0 ≤ j < log2 R0 index finitely many dyadic regions. Since the union of such regions is
compact, we can extend (cj) to such indices in an arbitrary manner, although we will assume that
the appended terms in the sequence are positive and allow (cj) to remain slowly-varying.
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Remark 1.2. The implicit constants in our inequalities throughout this work are permitted to (and often
will) depend on c (which is universal), M0 (also universal), and R0 (only depends on c). However, they cannot
depend on T ; the negation would be problematic and not allow one to e.g. take the limit as T → ∞. ■

Next, we introduce definitions regarding the skewness of P − iaDt and the size of the damping relative
to the magnetic potential. We will generically refer to these as symmetry conditions.

Definition 1.3. We say that P is

• of symmetric wave type if A and V are real-valued.
• ε-almost symmetric wave type if ∥(0, ImA, 0, ImV )∥AF ≤ ε.
• ε-weakly magnetic if ∥(0, ImA, 0, 0)∥AF ≤ ε.
• strongly ε-damping dominant if

a(x) ≥ ε−1| ImA(x)|, |x| ≤ 2R0.

• weakly ε-damping dominant if

g0jξj ±
√

(g0jξj)
2
+ gijξiξj

±2
√
(g0jξj)

2
+ gijξiξj

(a+ g0α ImAα)±
ξk

2
√

(g0jξj)
2
+ gijξiξj

gkα ImAα ≥ εa, |x| ≤ 2R0, ξ ̸= 0.

Remark 1.4. The parameter ε in the definitions of the ε-almost symmetric wave type, ε-weakly magnetic
condition, and strongly ε-damping dominant condition should be viewed as being fixed after R0,M0. The
same will not be true for the weakly ε-damping dominant condition, which we will assume holds for some
ε > 0 independent of the previously-discussed parameters. ■

Remark 1.5. The weakly ε-damping dominant condition, while seemingly esoteric, will arise naturally in
our high frequency analysis and constitutes a sharpening of the more concrete and directly-verifiable strongly
ε-damping dominant condition. First, we remark that we will need the latter to hold for sufficiently small
ε > 0 in order to obtain our results, whereas we only need the former to hold for some ε > 0. The range
of ε which are sufficient for our results to hold for strongly ε-damping dominant P will guarantee that the
weaker condition holds (for a different ε). We will now discuss their relationship more explicitly.

In the language of Section 2.1, the weakly ε-damping dominant condition may be written as

b±

b± − b∓
(a+ g0α ImAα) +

ξk
b± − b∓

gkα ImAα ≥ εa, |x| ≤ 2R0, ξ ̸= 0,

where

b+(x, ξ) > 0 > b−(x, ξ), b±(x, ξ) ≈ ±|ξ|, ξ ̸= 0.

Hence, the weakly ε-damping dominant condition may be recast (up to a fixed constant coefficient on the
lower-bound side) in more simple terms as

a+ g0α ImAα ± ξk
|ξ|

gkα ImAα ≥ εa.

If P is strongly ε-damping dominant, then

a+ g0α ImAα ± ξk
|ξ|

gkα ImAα ≥ a− 2(∥g −m∥L∞ + 1)| ImA|

≥ (1− 2ε(∥g −m∥L∞ + 1)) a, |x| ≤ 2R0, ξ ̸= 0.

If ε < (2 ∥g −m∥L∞ + 2)−1, then the weakly ε′-damping dominant condition holds with

ε′ = 1− 2ε(∥g −m∥L∞ + 1) > 0.

In particular, 0 < ε′ < 1.
On the other hand, if g = m, then the weakly ε-damping dominant condition stipulates that

1

2
(a− ImA0)±

1

2|ξ|

3∑
k=1

ξk ImAk ≥ εa, |x| ≤ 2R0, ξ ̸= 0.
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By considering when ξ is a standard basis vector ej and summing the results over j, we obtain that

3(a− ImA0)±
3∑

k=1

ImAk ≥ 6εa, |x| ≤ 2R0.

Focusing the minus case, this yields that

a ≥ (3(1− 2ε))−1 (2 ImA0 + | ImA|) , |x| ≤ 2R0.

If ImA0 ≥ 0, then P is ε′-strongly damping dominant, with ε′ = 3(1 − 2ε). Hence, the conditions are
equivalent in the flat case for non-negative ImA0 and appropriate (and different) ε. ■

We note that ImA is already guaranteed to be small for |x| > R0 by asymptotic flatness, so the ε-weakly
magnetic condition is more so a condition for |x| ≤ R0. This is a weakening of the more standard ε-almost
symmetry condition, which will arise briefly in Section 2.3. The ε-damping dominant conditions are, to
our knowledge, more original and seemingly more natural; we will only discuss the strong version for now
since it is simpler to parse and easier to verify (as well as stronger). It stipulates that the damping must
be the dominant skew-adjoint term (at the principal level) for |x| ≤ 2R0. Thus, the magnetic potential is
permitted to have large imaginary components for |x| ≤ 2R0, so long as the damping is more significant,
in the sense stated above. Moreover, the ε in the strongly ε-damping dominant condition must satisfy that
ε < (2 ∥g −m∥L∞ +2)−1 for our results to hold in this work (in which case the weakly ε-damping dominant
condition holds with a different ε, as discussed in the previous remark). This indicates that if the metric
perturbation is sufficiently large within {|x| ≤ R0}, then | ImA| must be sufficiently smaller than a. If the
perturbation is small, then | ImA| and a are permitted to be close for |x| ≤ 2R0.

Finally, we remark that neither the ε-weakly magnetic nor the strongly ε-damping dominant condition
is stronger than the other, although working with the conditions is somewhat similar in the high frequency
analysis; the same is true for the ε-weakly magnetic condition and the weakly ε-damping dominant condition,
for similar reasons. One should view the damping condition as allowing | ImA| to be potentially quite large
for |x| ≤ 2R0, so long as a is sufficiently larger (although, of course, both are inherently limited by the M0

parameter, as well). However, let us say that a is zero outside of a ball of radius δ ≪ 1 and is small within the
ball. Then, the strongly ε-damping dominant condition would require that ImA be zero for δ ≤ |x| ≤ 2R0

and small everywhere. The ε-weakly magnetic condition allows for | ImAα| > 0 for |x| ≤ 2R0, so long as we
control the AF size uniformly.

1.2. Local Energy Spaces and Estimates. The study of localized energy estimates dates back to the
work of [Mor66, Mor68, Mor75], [MRS77] on Minkowski space-time. Local energy estimates constitute
a powerful measure of dispersion, implying Strichartz estimates ([BT07, BT08], [JSS90, JSS91], [MMT08],
[MMTT10], [MT09, MT12], [Tat08], [Toh12]) and pointwise decay estimates (e.g. [MTT12], [Tat13], [Mor20],
[MW21], [Loo23], [Hin23]). The latter has been used to tackle various generalizations of Price’s law which,
in its simplest form, conjectured a t−3 pointwise decay rate of waves on non-rotating black hole space-times;
see the listed references on pointwise decay and [Hin22] (which settles the conjecture affirmatively in full
generality) for more. The particular local energy estimate of interest in this work, integrated local energy
decay, is a powerful quantitative statement given in the form of an inequality which may be qualitatively
interpreted as expressing that the energy of a wave must disperse quickly enough to be time-integrable within
any compact region of space.

In order to define the relevant energy inequalities explicitly, we will first define the local energy norms

∥u∥LE = sup
j≥0

∥∥∥⟨x⟩−1/2u
∥∥∥
L2L2

(
R+×Aj

) , ∥u∥LE1 = ∥∂u∥LE +
∥∥⟨x⟩−1u

∥∥
LE

.

The predual norm to the LE norm is the LE∗ norm, which is defined as

∥f∥LE∗ =

∞∑
j=0

∥∥∥⟨x⟩1/2f∥∥∥
L2L2

(
R+×Aj

) .
If we wish for the time interval to be e.g. [0, T ] in the above norms, then we will use the notation e.g.
∥u∥LE[0,T ]. A subscript of c on any of these spaces denotes compact spatial support, whereas a subscript of

0 denotes the closure of C∞
c in the relevant norm.
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Analogous to the local energy spaces, we define the spatial local energy spaces LE ,LE1,LE∗ when the
time variable is fixed (and there is no time derivative nor integral involved in the norms, either). We will
also require spaces which allow us to track dependence on a spectral parameter ω, namely

LE1
ω = LE1 ∩ |ω|−1LE , Ḣ1

ω = Ḣ1 ∩ |ω|−1L2.

These spaces are equipped with the norms

∥u∥LE1
ω
= ∥u∥LE1 + |ω| ∥u∥LE , ∥u∥Ḣ1

ω
= ∥u∥Ḣ1 + |ω| ∥u∥L2 ,

respectively. They will become relevant in this work when we introduce the resolvent formalism in Section
3. Now, we will define local energy decay.

Definition 1.6. We say that (integrated) local energy decay holds for an asymptotically flat damped wave
operator if

(1.1) ∥u∥LE1[0,T ] + ∥∂u∥L∞L2[0,T ] ≲ ∥∂u(0)∥L2 + ∥Pu∥LE∗+L1L2[0,T ] ,

with the implicit constant being independent of T .

The next estimate is a weaker variant of local energy decay which does not see complex eigenvalues nor
non-zero real resonances (to be defined in Section 3).

Definition 1.7. We say that two-point local energy decay holds for an asymptotically flat damped wave
operator if

(1.2) ∥u∥LE1[0,T ] + ∥∂u∥L∞L2[0,T ] ≲ ∥∂u(0)∥L2 + ∥∂u(T )∥L2 + ∥Pu∥LE∗+L1L2[0,T ] ,

with the implicit constant being independent of T .

The last estimate is a standard uniform energy bound, which embodies the behavior that one observes
when the energy of the system is non-increasing.

Definition 1.8. We say that uniform energy bounds hold for an asymptotically flat damped wave operator
if

(1.3) ∥∂u∥L∞L2[0,T ] ≲ ∥∂u(0)∥L2 + ∥Pu∥L1L2[0,T ] ,

with the implicit constant being independent of T .

Notice that the uniform energy bounds provide a link between the two-point local energy decay estimate
and the local energy decay estimate. In order to discuss the uniform estimate further, let Pu = f , and
assume that P is stationary, asymptotically flat, and of symmetric wave type. Consider the sesquilinear map
E on the energy space E := Ḣ1 × L2 defined by

E[u,v](t) =

∫
R3

P0uv̄ − g00∂tu∂tv dx, P0 = P
∣∣
Dt=0

, w = (w, ∂tw) ∈ E .

This induces a quadratic energy functional, i.e. an energy form

E[u](t) := E[u,u](t).

When ∂t is a uniformly time-like vector field (which we will assume throughout), P0 is guaranteed to be
elliptic (in the principal sense). Direct integration by parts gives that

d

dt
E[u](t) = 2Re

∫
R3

∂tuf̄ dx− 2Re

∫
R3

a|∂tu|2 dx.

If a is real-valued and non-negative, then it follows that

E[u](t) ≲ E[u](0) +

T∫
0

∫
R3

|f∂tu| dxdt, 0 ≤ t ≤ T.

If A, V ≡ 0, then P0 is uniformly elliptic (in the sense of the full symbol), which implies that the energy is
coercive, i.e.

E[u](t) ≈ ∥∂u(t)∥2L2 .
5



Energy coercivity applied to the above now provides the uniform energy bound (1.3).
When A and V are non-zero, one is not guaranteed energy coercivity (and thus not guaranteed uniform

energy bounds), even if a is non-negative. However, one does get an almost-coercive energy statement from
the ellipticity of P0 and the asymptotic flatness assumption:

(1.4) ∥∂u(t)∥2L2 ≲ E[u](t) + ∥u(t)∥2L2
c
.

When P is not of symmetric wave type, then one redefines the energy by replacing P0 with its symmetric
part (see Section 2.3); the estimate (1.4) still holds for the energy associated to P0 by ellipticity regardless of
the symmetry. The uniform bound (1.3) still need not hold when P0 is replaced by its symmetric part. Thus,
it is not straightforward to transition from (1.2) to (1.1) when A, V ̸≡ 0, even for well-signed dampings; this
is true even in the symmetric wave type case.

1.3. Past Results. In [MST20], the authors proved (amongst other results) that local energy decay for
stationary AF wave operators is equivalent to an absence of geodesic trapping, negative eigenfunctions, and
real resonances. We will describe trapping in Section 2.1 and the spectral objects in Section 3. In short,
trapping occurs when there exist bicharacteristic rays which live within a compact set for all time. The
spectral obstructions correspond to singular behavior of the resolvent - negative eigenfunctions live in L2

and have corresponding eigenvalue in the lower half-plane, whereas real resonances lie on the real line and
have a corresponding resonant state which lives in a local energy space (one must distinguish between zero
and non-zero resonances). In [MST20], the authors also did not necessarily possess a coercive energy; they
proved local energy decay by establishing (1.2) using local energy estimates in different frequency regimes,
then they utilized resolvent estimates.

The work [BR14] utilized dissipative Mourre commutator methods to establish that if the space-time is
stationary and asymptotically Euclidean (i.e. (R4, g) is a product manifold and hence possesses no non-trivial
metric cross terms dt⊗dxj), then one has local energy decay for AF stationary damped wave operators with
A, V ≡ 0 and a being a non-negative short-range potential, provided that a satisfied a dynamical hypothesis
called geometric control. This condition requires that all trapped null bicharacteristic rays intersect where
a > 0 (see Definition 2.1 for a precise definition), although the authors of [BR14] only required this for
trapped geodesics due to the product manifold structure. Geometric control dates back to [RT74], which
utilized it to obtain exponential energy decay (i.e. uniform stabilization) for dissipative problems on compact
manifolds. In [Kof23], we generalized the work of [BR14] to the asymptotically flat case (i.e. allowed the
metric to possess cross terms). To be precise, we will record this result, which is Theorem 1.9 in [Kof23]
(adding in the missing assumption of uniformly space-like time slices).

Theorem 1.9. Let P be a stationary, asymptotically flat damped wave operator satisfying the geometric
control condition with A, V ≡ 0 and supp a ⊂ {|x| ≤ R0}, and suppose that ∂t is uniformly time-like while
the constant time slices are uniformly space-like. Then, local energy decay holds, with the implicit constant
in (1.1) independent of T .

In [Kof23], uniform energy bounds held as a result of the conditions on the damping and lack of potentials,
which made it sufficient to prove the two-point bound in order to establish local energy decay. In order to
establish the former estimate, [Kof23] followed the strategy set forth in [MST20]:

(1) Establish local energy estimates that imply local energy decay for Schwartz functions, whose cor-
responding function space we denote as S, which are cutoff to high, medium, and low frequency
regimes.

(2) Utilize a time frequency partition of unity to prove the estimate

∥u∥LE1 ≲ ∥Pu∥LE∗ , u ∈ S.

(3) Apply an extension procedure to add back in the energy at times 0 and T .

1.4. Statement of Present Results. We will generalize the work of [Kof23] to include the lower-order
magnetic and scalar potentials, along with more general damping functions. Our first result is an extension
of the high frequency estimate present in [MST20] and [Kof23] to our setting.

Theorem 1.10. Let P be a stationary, asymptotically flat damped wave operator which satisfies the geo-
metric control condition and is either weakly ε-damping dominant for some ε > 0 or ε-weakly magnetic with
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ε ≪R0,M0 1. Additionally, assume that ∂t uniformly time-like while the constant time slices are uniformly
space-like. Then, the high frequency estimate

(1.5) ∥u∥LE1[0,T ] + ∥∂u∥L∞L2[0,T ] ≲ ∥∂u(0)∥L2 +
∥∥⟨x⟩−2u

∥∥
LE[0,T ]

+ ∥Pu∥L1L2+LE∗[0,T ]

holds with an implicit constant which is independent of T .

This theorem is the one of the primary results whose proof must be adapted from [Kof23] to account
for the lower-order terms. It is also where one requires the most substantial deviation from [MST20], since
trapping is high frequency. We utilize the symmetry-based assumptions in the theorem so that we may deal
with the additional lower-order terms. In particular, this is where the conditions on the interaction between
the damping and magnetic potentials come into play. In order to leverage the sign of the damping to mitigate
the harmful effects of the trapping, we must limit the magnetic potential appropriately.

The medium and low frequencies are not affected by the damping (which may simply be viewed as a
general sub-principal AF term, as opposed to being leveraged like in the high frequency setting) and follow
directly from the work in [MST20]. This allows us to establish the two-point local energy estimate under
the hypothesis that zero is not a resonance, which is needed in the low frequency regime.

Theorem 1.11. Let P be a stationary, asymptotically flat damped wave operator which satisfies the zero
non-resonance and geometric control conditions and is either weakly ε-damping dominant for some ε > 0 or
ε-weakly magnetic with ε ≪R0,M0

1. Additionally, assume that ∂t is uniformly time-like while the constant
time slices are uniformly space-like. Then, two-point local energy decay holds, with the implicit constant in
(1.2) independent of T .

We will define the zero non-resonance condition in Section 2.2 and its relation to zero resonant states in
Section 3. If we additionally impose that P is of ε-almost symmetric wave type or that P satisfies the ε-
damping dominant as well as the analogous estimate with A replaced by V , then we obtain a straightforward
energy dichotomy (just as in [MST20], where it is Theorem 2.16) as a consequence of the two-point local
energy estimate and a uniform energy relation. The given symmetry conditions fulfill a similar role to a
condition on the absence of non-zero embedded resonances, and it is needed to obtain the aforementioned
uniform energy relation (i.e. an almost-conserved energy property if Pu = 0) which will appear in the proof.

Theorem 1.12. Let P be a stationary, asymptotically flat damped wave operator which is either

(a) ε-almost symmetric wave type for sufficiently small ε ≪R0,M0
1

or
(b) strongly ε-damping dominant with respect to the magnetic potential, the gradient of the magnetic

potential, and the scalar potential for sufficiently small ε ≪R0,M0
1, equivalently

a(x) ≥ ε−1(|A(x)|+ |∇A(x)|+ |V (x)|), |x| ≤ 2R0,

and satisfies the zero non-resonance and geometric control conditions. Additionally, assume that ∂t is uni-
formly time-like while the constant time slices are uniformly space-like. Then, there exists an α > 0 so that
any solution to

Pu = f, u[0] ∈ E , f ∈ LE∗ + L1L2

satisfies one of the following two properties:

(1) Exponential growth asymptotics in terms of the data and forcing:

∥∂u(t)∥L2 ≳ eαt
(
∥∂u(0)∥L2 + ∥f∥LE∗+L1L2[0,∞)

)
, t ≫ 1.

(2) Local energy decay:

∥u∥LE1[0,∞) + ∥∂u∥L∞L2[0,∞) ≲ ∥∂u(0)∥L2 + ∥f∥LE∗+L1L2[0,∞) .

Remark 1.13. Condition (b) on the damping can be readily weakened to assuming that P is ε-weakly
damping dominant (in order for Theorem 1.11 to apply) and that, for ε small enough and all t > 0, the
estimate

−2Re

t∫
0

∫
R3

∂suP au dxds− 2i Im

t∫
0

∫
R3

∂suP a
0 u dx ds ≤ −C(ε, c)

t∫
0

∫
B2R0

(0)

a|∂su|2 dxds+O(c) ∥u∥2LE1
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holds for some C(ε, c) > 0, where P a and P a
0 are the skew-adjoint parts of P and P0, respectively. The

assumption given in the dichotomy was stated as such merely for tractability, as it will both satisfy the
relevant hypothesis in Theorem 1.11 and allows the above bound to hold as a consequence of Hölder’s
inequality, Young’s inequality for products, and asymptotic flatness. ■

At least at a heuristic level, the solutions which exhibit case (1) behavior stem from eigenvalues in the lower
half-plane of the corresponding stationary problem (see Section 3), which represent poles of the resolvent.
The resolvent has meromorphic continuation to the entire lower half-plane, and the poles must occur within
a relatively compact subset of frequencies. In particular, there are only finitely many such eigenvalues,
and each generalized eigenspace has finite dimension by Fredholm theory. We also remark that we do not
obtain improvements from the corresponding result in [MST20] here, nor do we obtain versions of their
non-stationary results since our high frequency work exploits the stationarity. While more refined energy
space decompositions are likely (and are also present in [MST20] within the non-damped setting), the proper
statements and results in the context of damped waves are not clear to us at this time.

Finally, we have local energy decay. Here, we must further assume that P satisfies various spectral
hypotheses, which are defined in Section 3.

Theorem 1.14. Let P be a stationary, asymptotically flat damped wave operator which satisfies the zero
non-resonance and geometric control conditions and is either weakly ε-damping dominant for some ε > 0
or ε-weakly magnetic with ε ≪R0,M0 1. Suppose further that P has no negative eigenfunctions nor real
resonances and that ∂t is uniformly time-like while the constant time slices are uniformly space-like. Then,
local energy decay holds, with the implicit constant in (1.1) independent of T .

In order to prove this result, we cannot necessarily rely on uniform energy bounds to pass from the
two-point local energy estimate to local energy decay like in [Kof23] and instead rely on spectral theory as
in [MST20]. The structure of proving Theorem 1.14, and hence of the overall paper, is as follows and is
motivated by [MST20]:

(1) Section 2.1: Extend the high frequency analysis from [Kof23] to the present context. One must take
care to consider how the damping interacts with the remaining principal skew-adjoint terms; this
is the purpose of the ε-weakly magnetic and ε-damping dominant conditions. We will explain the
results that we borrow and why they apply here.

(2) Section 2.2: Provide an overview of the low and medium frequency analysis; these do not require
change from [MST20], since the damping is simply treated as a first-order AF perturbation term.
From here, Theorem 1.11 follows readily from the work in [MST20], [Kof23]. As an immediate
consequence, we will establish Theorem 1.12 in Section 2.3, although this has no bearing on the
proof of Theorem 1.14.

(3) Section 3: Summarize the necessary resolvent theory in [MST20] required to prove Theorem 1.14.
This will require Theorem 1.10 and Theorem 1.11. Once one is armed with the relevant frequency
estimates, the work in [MST20] applies rather directly. We will summarize and/or provide many
(but not all) of their arguments for the required results, especially where we believe that further
elucidation would be beneficial for the sake of exposition. We require little deviation from their
theory in our present work.

Remark 1.15. As a consequence of Remark 1.5, Theorems 1.10, 1.11, and 1.14 hold if the symmetry
conditions are replaced by the strongly ε-damping dominant condition with 2ε < (∥g −m∥L∞ + 1)−1. ■

Remark 1.16. As opposed to writing the d’Alembertian in divergence form (i.e. 2g = Dαg
αβDβ) and

utilizing the volume form dV = dxdt for our analysis, one could work with the geometric d’Alembertian
(that is, the Laplace-Beltrami form)

2̃g = |g|−1/2Dα|g|1/2gαβDβ , |g| = |det gαβ |

with the volume form dV = |g|1/2dxdt. Each d’Alembertian is symmetric with respect to the associated
volume form on L2(dV ). One can transition from the latter framework to the former by conjugating the
operator by |g|1/4 (see e.g. [Tat13], [Mor20]); lower-order terms arise, but they are permissible in view of
the magnetic and scalar potential terms already allowable in P . For this reason, we are working with the
former case. ■
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2. Frequency Analyses and Two-Point Local Energy Decay

In this section, we will prove Theorem 1.11 using high, low, and medium frequency analyses. The low and
medium frequency work follows directly from that in [MST20], while the high frequency work is a variation
on [Kof23] and requires the symmetry assumptions as described in Section 1.1.

To start, we will define cutoff notation which we will use throughout the duration of the paper. Namely,
we will fix χ ∈ C∞

c non-increasing, χ ≡ 1 for |x| ≤ 1, χ ≡ 0 for |x| > 2 and define χ<R(|x|) = χ(|x|/R),
χ>R = 1− χ<R. We will assume further that χ is the square of a smooth function for notation convenience
(as otherwise, we could work with χ2). We will occasionally add the variable into the subscript to make
the specific dependence clear (e.g. write χ|ξ|<λ when working truncating the spatial frequencies ξ below a
threshold λ).

2.1. High Frequency Analysis. We will recall the relevant framework and results from [Kof23] needed
to prove the high frequency estimate. When deviation occurs, we will proceed carefully and explicitly. The
need for the ε-damping dominant and ε-weakly magnetic conditions only come up in one place, in the proof
of Lemma 2.3. Throughout this section, we will assume that P is stationary. This work is motivated by
[Kof23], [MST20], and [BR14].

The high frequency analysis is rooted in the behavior of the bicharacteristic flow generated by the principal
symbol of P . First, we make a minor simplification. Since the constant time slices are assumed uniformly
space-like, it follows that g00 ≲ −1. Dividing through by −g00 preserves the assumptions on the operator
coefficients (see e.g. [MT12]); hence, we may assume that g00 = −1.

After these modifications, the principal symbol of P is the smooth function

p(x, τ, ξ) = −(τ2 − 2τg0j(x)ξj − gij(x)ξiξj), (t, x, τ, ξ) ∈ T ∗R4 \ o.

Notice that since P is stationary, p is independent of t. This symbol generates a bicharacteristic flow on
R× T ∗R4 given by φs(w) = (ts(w), xs(w), τs(w), ξs(w)) which solves{

ṫs = ∂τp(φs(w)), τ̇s = −∂tp(φs(w)),

ẋs = ∇ξp(φs(w)), ξ̇s = −∇xp(φs(w)),

with initial data w ∈ T ∗R4. Since g is smooth and asymptotically flat, and ∂t is uniformly time-like, we
have a unique, smooth, globally-defined flow with smooth dependence on the data. We will have particular
interest in null bicharacteristics, i.e. those with initial data lying in the zero set of p, denoted Char(P ).
We remark that there is no distinguishing between ±p on Char(P ), hence the minus sign in front of p is
somewhat inconsequential on it.

Using the flow φs, we define the forward and backward trapped and non-trapped sets with respect to φs,
respectively, as

Γtr =

{
w ∈ T ∗R4 \ o : sup

s≥0
|xs(w)| < ∞

}
∩ Char(P ),

Λtr =

{
w ∈ T ∗R4 \ o : sup

s≥0
|x−s(w)| < ∞

}
∩ Char(P ),

Γ∞ =
{
w ∈ T ∗R4 \ o : |xs(w)| → ∞ as s → ∞

}
∩ Char(P ),

Λ∞ =
{
w ∈ T ∗R4 \ o : |x−s(w)| → ∞ as s → ∞

}
∩ Char(P ).

The trapped and non-trapped sets are defined as

Ωp
tr = Γtr ∩ Λtr and Ωp

∞ = Γ∞ ∩ Λ∞,

respectively. The flow is said to be non-trapping if Ωp
tr = ∅. Otherwise, the flow is said to possess trapping.

Now, we may precisely state the geometric control condition.
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Definition 2.1. We say that the geometric control condition holds if

(∀w ∈ Ωp
tr)(∃s ∈ R) a(xs(w)) > 0.(2.1)

In order to leverage the sign of the damping, [Kof23] utilized a scaling argument which we will also exploit.
Namely, if u solves Pu = f , we consider

ũ(t, x) := u(γt, γx), γ > 0.

For this discussion, a tilde over a function will denote dilation by γ in each coordinate, as done to define ũ.
If we call

P̃ = (Dα + γÃα)g̃
αβ(Dβ + γÃβ) + iγãDt + γ2Ṽ ,

then

P̃ (γ−2ũ) = f̃ if and only if Pu = f.

The benefit of this scaling is that we obtain an arbitrarily large constant in front of the damping function.
However, we underscore that such a large constant is also inherited by the magnetic potential.

Analogous Hamiltonian systems and trapped/non-trapped sets exist for the principal symbol p̃ of P̃ ,
which amounts to simply dilating the coordinates of g. If we assume that geometric control holds for the
flow generated by p, then it is proven in [Kof23] that it holds for the flow generated by p̃. Since the proof is
straightforward, we will omit it here and only record the result, which is Proposition 2.6 in [Kof23].

Proposition 2.2. Assume that the geometric control condition (2.1) holds. Then, for any γ > 0, (2.1)
holds for the flow generated by p̃, with a replaced by ã.

Since the lower-order terms A and V are not at the principal level, they do not affect p nor p̃. Henceforth,
we will fix a large γ > 0 and study the problem from the scaled perspective while reverting back to our
original notation (e.g. no tildes). It is readily seen that it is equivalent to prove Theorem 1.10 for the scaled
problem, where we now have a large constant in front of the damping term.

The proof of the version of Theorem 1.10 present in [Kof23] (i.e. A, V ≡ 0, supp a ⊂ {|x| ≤ R0}) is a
positive commutator argument. At the symbolic level, this requires the construction of an escape function
and a lower-order correction term. Let p and sskew represent the principal symbols of the self and skew-
adjoint parts of P , respectively. Namely,

p(x, τ, ξ) = −(τ2 − 2τg0j(x)ξj − gij(x)ξiξj)

sskew(x, τ, ξ) = iγ
(
ImAα(x)(g

α0(x)τ + gαk(x)ξk) + τ Re a(x)
)
.

The multiplication by γ in sskew will prove advantageous for a bootstrapping argument, which is precisely
why we implement the γ-scaling. However, the imaginary part of A has interaction with the damping and
also features multiplication by γ. The ε-damping dominant and ε-weakly magnetic conditions are applied
in order to retain the positivity effects of the damping.

The precise escape function construction is as follows.

Lemma 2.3. For all λ > 1, there exist symbols qj ∈ Sj(T ∗R3) and m ∈ S0(T ∗R3), all supported in |ξ| ≥ λ,
so that

Hpq − 2isskewq + pm ≳ χ|ξ|>λ ⟨x⟩
−2 (

τ2 + |ξ|2
)
,

where q = τq0 + q1.

Here, Hp is the Hamiltonian vector field induced by p, and Sm(T ∗R3) denotes the standard Kohn-
Nirenberg symbol class of order m. To each symbol b ∈ Sm(T ∗R3), we have the associated Weyl quantization
of b, denoted bw, which is a pseudodifferential operator of order m defined by the action

bw(x,D)u(x) = (2π)−3

∫
R3

∫
R3

ei(x−y)·ξ b

(
x+ y

2
, ξ

)
u(y) dydξ, u ∈ S(R3).

We will use Ψm(R3) to denote the space of pseudodifferential operators on R3 of order m, and write

Ψ−∞(R3) :=
⋂
m∈R

Ψm(R3)

for the space of smoothing operators on R3.
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Lemma 2.3 was proven in [Kof23] in the special case of A, V ≡ 0 and supp a ⊆ {|x| ≤ R0}, leading to a
simplified sskew. As in the aforementioned work, we will work with the half-wave decomposition; it is proven
in [Kof23] that the null bicharacterstics are equivalent through a reparameterization argument, and this fact
continues to hold here without any change (lower-order terms do not affect p and hence will not affect its
induced bicharacteristic flow). That is, we factor p as

p(τ, x, ξ) = −(τ − b+(x, ξ))(τ − b−(x, ξ)),

where

b±(x, ξ) = g0j(x)ξj ±
√

[g0j(x)ξj ]2 + gij(x)ξiξj .

Using that ∂t is uniformly time-like, it is readily seen that b± are both positively homogeneous of degree 1
in ξ, and

b+(x, ξ) > 0 > b−(x, ξ)

whenever ξ ̸= 0. The Hamiltonians p± := τ − b± also generate bicharacteristic flows

φ±
s (w)=

(
t±s (w), x

±
s (w), τ

±
s (w), ξ±s (w)

)
on R× T ∗R4 which solve the Hamiltonian systems{

ṫ±s = 1, τ̇±s = 0,

ẋ±
s = −∇ξb

±(φ±
s (w)), ξ̇±s = ∇xb

±(φ±
s (w)),

with initial data w ∈ T ∗R4. Observe that the (t, τ) and (x, ξ) systems are decoupled, allowing us to project
onto the (x, ξ) components of the flow without losing information. Notice that, after we project, we are
no longer looking at null bicharacteristics but, rather, bicharacteristics with initial data having non-zero ξ
component.

Now, we may define the forward and backward (denoted by the ± notation) trapped and non-trapped
sets for the half-wave flows as

Γ±
tr =

{
w ∈ T ∗R3 \ o : sup

s≥0
|x±

s (w)| < ∞
}
,

Λ±
tr =

{
w ∈ T ∗R3 \ o : sup

s≥0
|x±

−s(w)| < ∞
}
,

Γ±
∞ =

{
w ∈ T ∗R3 \ o : |x±

s (w)| → ∞ as s → ∞
}
,

Λ±
∞ =

{
w ∈ T ∗R3 \ o : |x±

−s(w)| → ∞ as s → ∞
}
.

The trapped and non-trapped sets are

Ω±
tr = Γ±

tr ∩ Λ±
tr and Ω±

∞ = Γ±
∞ ∩ Λ±

∞,

Ωtr = Ω+
tr ∪ Ω−

tr and Ω∞ = Ω+
∞ ∪ Ω−

∞.

As a consequence of the factoring, we have the identities

Ωtr = Πx,ξ(Ω
p
tr) and Ω∞ = Πx,ξ(Ω

p
∞),

where Πx,ξ(t, x, τ, ξ) = (x, ξ). Additionally, we may re-state geometric control in terms of the factored flow.
If w ∈ Ωtr, then it is either trapped with respect the flow generated by p+ or p−. If it is trapped with respect
to p+, then there is a time so that w is flowed along a p+-bicharacteristic ray to a point where the damping
is positive, and similarly if it is trapped with respect to p−.

Since A and V do not occur at the principal level for P , they will not affect the individual components of
the escape function construction. Hence, the construction in [Kof23] applies directly. The methodology in
[Kof23], motivated by a combination of [BR14], [MST20], and [MMT08], is performed in the following steps:

(1) On the characteristic set. We will refer to {|x| ≤ R0} as the interior and {|x| > R0} as the
exterior.
(a) Interior, semi-bounded null bicharacteristics. Here, one considers semi-bounded null

bicharacteristics with initial data living in the interior region. Working with semi-bounded
trajectories is favorable since they include both trajectories that are trapped and those which
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escape slowly. Additionally, geometric control extends to such trajectories. This is where
geometric control is used.

(b) The remainder of the interior region. In this region, all of the trajectories escape both
forward and backward in time. This region is more classical, but care must be taken both to
avoid the trapping and incorporate the half-wave structure.

(c) The exterior region. As a consequence of asymptotic flatness, there are no trapped trajecto-
ries in this region. Here, one appeals to geometrically-adapted flat wave theory. The multiplier
also allows for the absorption of an error term which arises in the prior region.

(2) On the elliptic set. Here, one requires a lower-order symbol which provides no contribution on
the characteristic set and provides positivity off of it. This essentially follows from the minimization
of an appropriate quadratic in the dual time variable τ .

Now, we cite the specific results from [Kof23] (namely, Lemmas 2.13 and 2.16, respectively). First, we
define the interior, semi-trapped set

Ω±
R0

:=
(
Γ±
tr ∪ Λ±

tr

)
∩ {|x| ≤ R0}.

This is related to step (1a). Next, we define the function

Φ±(x, ξ) =

(
x,

ξ

|b±(x, ξ)|

)
.

It can be shown directly that {
x±
s (x, ξ) = x±

s (x, λξ),

λξ±s (x, ξ) = ξ±s (x, λξ)

for any λ > 0 due to the homogeneity of b±. Since |ξ/b±(x, ξ)| ≈ 1 for ξ ̸= 0 and b± is a constant of motion
for the flow generated by p± (which explicitly utilizes that g is stationary), the function Φ± provides a lifting
which is useful to pair with scaling arguments. The first portion of the construction (1a) is contained in
the following lemma, which was motivated by [BR14]. This is where geometric control is utilized. (More
precisely, geometric control also applies to semi-trapped trajectories; see [Kof23].)

Lemma 2.4 (Semi-bounded Escape Function Construction). There exist q±1 ∈ C∞(T ∗R3 \ o), an open set
V ±
R0

⊃ Ω±
R0

, and C± ∈ R+ so that

Hp±q±1 + C±aχ<R0
≳R0

1V ±
R0

.

Further, q±1 = q̃±1 ◦ Φ±, where q̃±1 ∈ C∞
c (T ∗R3 \ o).

Next, we complete steps (1b) and (1c).

Lemma 2.5 (Non-trapped Escape Function Construction). There exist q±2 ∈ C∞(T ∗R3 \ o) and W± ⊂ Ω±
∞

so that V ±
R0

∪W± = T ∗R3 \ o, W± ⊃ {|x| > R0} and

Hp±q±2 ≳ cj2
−j
1W± , |x| ≈ 2j .

Further, q±2 = q±in + q±out, where q±in = q̃±in ◦Φ±, with q̃±in ∈ C∞(T ∗R3 \ o) being supported in {|x| ≤ 4R} and
q±out ∈ S0

hom(T
∗R3 \ o).

We remark that the behavior of (cj) does not matter so much for 0 ≤ j < log2 R0, as long as each
corresponding cj is positive.

To complete the remaining steps and prove Lemma 2.3, we proceed similarly to the work in [Kof23], with
special attention paid to the new contributions of sskew. The presence of ImA in sskew did not occur in
[Kof23] and must be dealt with here. The symmetry conditions arise when one must balance the ability to
leverage the sign on the damping for |x| ≤ 2R0 with the necessity to absorb the unsigned magnetic terms.

Proof of Lemma 2.3. First, we truncate the symbols to stay away from ξ = 0:

q±j,>λ = e−σjq
±
j χ|b±|>λ, j = 1, 2,

where σ1, σ2 ≫ 1. Unlike [Kof23], we need two parameters σ1 and σ2, as opposed to just one parameter; the
additional parameter is needed to deal with unsigned first-order errors. The exponentiation is implemented
for bootstrapping: Taking derivatives of the exponentials will provide multiplication by σ1 and σ2. It
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is readily seen that q±j,>λ ∈ S0(T ∗R3) via the chain rule. We combine the symbols constructed on the
individual light cones together as

q(x, τ, ξ) = (τ − b+)(q−1,>λ + q−2,>λ) + (τ − b−)(q+1,>λ + q+2,>λ).

Calling

qj = (τ − b+)q−j,>λ + (τ − b−)q+j,>λ,

we can see that(
Hpq + 2γ

(
τ Re a+ ImAα(g

α0τ + gαkξk)
)
q
) ∣∣

τ=b±

=
(
Hpq1 + 2γ

(
τ Re a+ ImAα(g

α0τ + gαkξk)
)
q1
) ∣∣

τ=b±
+

(
Hpq2 + 2γ

(
τ Re a+ ImAα(g

α0τ + gαkξk)
)
q2
) ∣∣

τ=b±

= Hpq1
∣∣
τ=b±

± 2γ(b+ − b−)
(
b±(Re a+ ImAαg

α0) + ImAαg
αkξk|τ=b±

)
q±1,>λ

+Hpq2
∣∣
τ=b±

± 2γ(b+ − b−)
(
b±(Re a+ ImAαg

α0) + ImAαg
αkξk|τ=b±

)
q±2,>λ.

We will work with each term in the last equality separately. First, we compute that

Hpqj
∣∣
τ=b±

= −(b+ − b−)2Hp±q±j,>λ − (b± − b∓)q±j,>λ(b
±
ξj
b∓xj

− b±xj
b∓ξj )

= σj(b
+ − b−)2q±j,>λHp±q±j − (b± − b∓)q±j,>λ(b

±
ξj
b∓xj

− b±xj
b∓ξj ).

By making σ1, σ2 sufficiently large, we get that

Hpq1
∣∣
τ=b±

+Hpq2
∣∣
τ=b±

≥ 1

2
σ1(b

+ − b−)2q±1,>λHp±q±1 +
1

2
σ2(b

+ − b−)2q±2,>λHp±q±2 ,

and so

(
Hpq + 2γ

(
τ Re a+ ImAα(g

α0τ + gαkξk)
)
q
) ∣∣

τ=b±

≳ σ1(b
+ − b−)2q±1,>λHp±q±1 ± 2γ(b+ − b−)

(
b±(Re a+ ImAαg

α0) + ImAαg
αkξk|τ=b±

)
q±1,>λ

+ σ2(b
+ − b−)2q±2,>λHp±q±2 ± 2γ(b+ − b−)

(
b±(Re a+ ImAαg

α0) + ImAαg
αkξk|τ=b±

)
q±2,>λ.

We will consider each line in the above lower bound separately. First, observe that

b±

b± − b∓
≈ 1.

Case 1: P is weakly ε-damping dominant. By using the weakly ε-damping dominant condition and
choosing γ sufficiently larger than ε−1σ1, we may apply Lemma 2.4 to obtain that, for |x| ≈ 2ℓ,

σ1(b
+ − b−)2q±1,>λHp±q1 ± 2γ(b+ − b−)

(
b±(Re a+ ImAαg

α0) + ImAαg
αkξk|τ=b±

)
q±1,>λ(2.2)

= σ1(b
+ − b−)2q±1,>λ

(
Hp±q±1 +

(
2γ

σ1

)
b±

b± − b∓
(
Re a+ g0α ImAα

)
+

(
2γ

σ1

)
ξk

b± − b∓
ImAαg

αk

)
≳ σ1(b

+ − b−)2q±1,>λ

(
Hp±q±1 +

2γ

σ1
(εRe aχ<R0 − cℓ2

−ℓχ>R0)

)
≳ σ1χ|ξ|>λ|ξ|2

(
1V ±

R0

− 2γ

σ1
cℓ2

−ℓχ>R0

)
.

Next, we use the weakly ε-damping dominant, use that the damping is non-negative for |x| ≤ 2R0, use
Lemma 2.5, and choose σ2 sufficiently larger than γ to give that, for |x| ≈ 2ℓ,

σ2(b
+ − b−)2q±2,>λHp±q2 ± 2γ(b+ − b−)

(
b±(Re a+ ImAαg

α0) + ImAαg
αkξk|τ=b±

)
q±2,>λ

(2.3)

= σ2χ<R0(b
+ − b−)2q±2,>λ

(
Hp±q±2 +

(
2γ

σ2

)
b±

b± − b∓
(
Re a+ g0α ImAα

)
+

(
2γ

σ2

)
ξk

b± − b∓
ImAαg

αk

)
+ σ2χ>R0

(b+ − b−)2q±2,>λ

(
Hp±q±2 +

(
2γ

σ2

)
b±

b± − b∓
(
Re a+ g0α ImAα

)
+

(
2γ

σ2

)
ξk

b± − b∓
ImAαg

αk

)
≳ σ2χ|ξ|>λχ|x|<R0

|ξ|21W± + σ2χ|ξ|>λχ|x|>R0
cℓ2

−ℓ|ξ|2
(
1− 2γ

σ2

)
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≳ σ2χ|ξ|>λχ|x|<R0
|ξ|21W± + σ2χ|ξ|>λχ|x|>R0

cℓ2
−ℓ|ξ|2.

Case 2: P is ε-weakly magnetic. By using the ε-weakly magnetic condition and choosing γ sufficiently
larger than σ1, we may apply Lemma 2.4 to obtain that, for |x| ≈ 2ℓ,

σ1(b
+ − b−)2q±1,>λHp±q1 ± 2γ(b+ − b−)

(
b±(Re a+ ImAαg

α0) + ImAαg
αkξk|τ=b±

)
q±1,>λ(2.4)

= σ1(b
+ − b−)2q±1,>λ

(
Hp±q±1 +

(
2γ

σ1

)
b±

b± − b∓
(
Re a+ g0α ImAα

)
+

(
2γ

σ1

)
ξk

b± − b∓
ImAαg

αk

)
≳ σ1(b

+ − b−)2q±1,>λ

(
Hp±q±1 +

2γ

σ1
(Re aχ<R0

− ε(1 + ∥g −m∥L∞)χ<R0
− cℓ2

−ℓχ>R0
)

)
≳ σ1χ|ξ|≥λ|ξ|2

(
1V ±

R0

− 2γ

σ1

(
ε(1 + ∥g −m∥L∞)χ<R0

+ cℓ2
−ℓχ>R0

))
.

The poorly-signed interior term above is somewhat problematic and will dictate the choice of ε.
Next, we use the ε-weakly magnetic condition, apply Lemma 2.5, and choose σ2 sufficiently larger than γ

to give that, for |x| ≈ 2ℓ,

σ2(b
+ − b−)2q±2,>λHp±q1 ± 2γ(b+ − b−)

(
b±(Re a+ ImAαg

α0) + ImAαg
αkξk|τ=b±

)
q±2,>λ

(2.5)

= σ2χ<R0(b
+ − b−)2q±2,>λ

(
Hp±q±2 +

(
2γ

σ2

)
b±

b± − b∓
(
Re a+ g0α ImAα

)
+

(
2γ

σ2

)
ξk

b± − b∓
ImAαg

αk

)
+ σ2χ>R0(b

+ − b−)2q±2,>λ

(
Hp±q±2 +

(
2γ

σ2

)
b±

b± − b∓
(
Re a+ g0α ImAα

)
+

(
2γ

σ2

)
ξk

b± − b∓
ImAαg

αk

)
≳ σ2χ|ξ|>λχ|x|<R0

|ξ|2
(
1W± −

2γε(1 + ∥g −m∥L∞)

σ2

)
+ σ2χ|ξ|>λχ|x|>R0

cℓ2
−ℓ|ξ|2

(
1− 2γ

σ2

)
≳ σ2χ|ξ|>λχ|x|<R0

|ξ|2
(
1W± −

2γε(1 + ∥g −m∥L∞)

σ2

)
+ σ2χ|ξ|>λχ|x|>R0

cℓ2
−ℓ|ξ|2.

We claim that, in both cases, the estimate

(2.6)
(
Hpq + 2γ

(
τ Re a+ ImAα(g

α0τ + gαkξk)
)
q
) ∣∣

τ=b±
≳ 1|ξ|≥λcℓ2

−ℓ|ξ|2, |x| ≈ 2ℓ

holds. Indeed, recall that V ±
R0

∪W± = T ∗R3 \ o. In Case 1, we combine (2.2) and (2.3) and, if necessary,
further increase σ2 to directly get (2.6). In Case 2, we obtain (2.6) by combining (2.4) and (2.5) together, then
choosing ε ≪R0,M0 1 and, if necessary, further increase σ2. From (2.6), we use that (cℓ) is a slowly-varying,
summable sequence to conclude that(

Hpq + 2γ
(
τ Re a+ ImAα(g

α0τ + gαkξk)
)
q
) ∣∣

τ=b±
≳ χ|ξ|>λ⟨x⟩−2|ξ|2.

The work on the elliptic set in e.g. [MST20], [Kof23] applies without modification. Summarily, if we write

(2.7) Hpq+2γ
(
τ Re a+ ImAα(g

α0τ + gαkξk)
)
q+pm = (a0−m)τ2+

(
a1 + (b+ + b−)m

)
τ+(a2−b+b−m),

where aj ∈ Sj , then we choose

m = −(b+ − b−)−2
(
a1(b

+ + b−) + 2(a0b
+b− + a2)

)
.

Such an m ensures that the quadratic polynomial (2.7) in τ is concave up and has no real zeros. □

The proof of Theorem 1.10 is highly similar to the proof in [Kof23] for the analogous result. There are
a few additional terms to deal with, but the aforementioned work demonstrates how to deal with them, as
they are lower-order. We will briefly summarize the argument in [Kof23] and add in additional details for
the new terms. First, we remark that one can readily reduce the theorem to a simplified estimate, which we
state as a proposition.

Proposition 2.6. In order to prove Theorem 1.10, it suffices to prove that

(2.8) ∥v>λ∥LE1
<2R0

≲ C(λ, γ)
(
∥Pv∥1/2LE∗

c
∥v∥1/2LE1 + ∥v∥L2L2

)
+ γλ−1/2 ∥v∥LE1

for all v supported in {|x| ≤ 2R0}, where vλ = χ|ξ|>λ(Dx)v.
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This reduction was shown in [MST20] and [Kof23]. We will not reproduce the proof here, but the idea is
as follows:

(1) Use asymptotic flatness to reduce to the case of Pu and u[0] compactly-supported in {|x| ≤ 2R0}.
(2) Utilize a unit time interval and Duhamel’s theorem to reduce to u[0] = 0 and Pu ∈ LE∗

c .
(3) Remove the upper bound on the time integrals using a cutoff argument, making it sufficient to

integrate in t from −∞ to ∞.
(4) Reduce to solutions supported in {|x| ≤ 2R0} via standard exterior wave estimates.
(5) Add back in the low frequencies, then take λ ≫ γ and apply Young’s inequality for products in order

to bootstrap the LE1 terms on the right into the left.

Now, we prove Theorem 1.10. During the proof, we will use ⟨·, ·⟩ to denote the L2L2 inner product. We also
recall the γ-scaling that was introduced after Definition 2.1.

Proof of Theorem 1.10. We compute that

2Im

〈
Pv,

(
qw − i

2
mw

)
v

〉
+

iγ

2

〈
[(ImAαg

αβDβ +Dαg
αβ ImAα),m

w]v, v
〉
+

iγ

2
⟨[aDt,m

w]v, v⟩

(2.9)

− iγ
〈
[(ReAαg

αβDβ +Dαg
αβ ReAβ), q

w], v, v
〉

− γ

2

〈(
mw(ReAαg

αβDβ +Dαg
αβ ReAβ) + (ReAαg

αβDβ +Dαg
αβ ReAβ)m

w
)
v, v

〉
+ iγ2

〈
[ImAαg

αβ ImAβ − ReAαg
αβ ReAβ , q

w]v, v
〉

− 2γ2
〈(
qw(ImAαg

αβ ReAβ) + (ImAαg
αβ ReAβ)q

w
)
v, v

〉
− γ2

2

〈(
mw(ReAαg

αβ ReAβ) + (ReAαg
αβ ReAβ)m

w
)
v, v

〉
+

γ2

2

〈(
mw(ImAαg

αβ ImAβ) + (ImAαg
αβ ImAβ)m

w
)
v, v

〉
+ γ2

〈
[ReAαg

αβ ImAβ ,m
w]v, v

〉
+ iγ2 ⟨[qw,ReV ]v, v⟩+ iγ

2
⟨[ImV,mw]v, v⟩

− γ2

2
⟨(mw ReV +ReV mw)v, v⟩ − γ2 ⟨(qw ImV + ImV qw)v, v⟩

+ γ ⟨Im aDtm
wv, v⟩+ γ ⟨[Im a, qw]Dtv, v⟩

= ⟨i[2g, q
w]v, v⟩+ 1

2
⟨(2gm

w +mw2g)v, v⟩

+ γ
〈(
qw(Re aDt + ImAαg

αβDβ +Dαg
αβ ImAβ) + (Re aDt + ImAαg

αβDβ +Dαg
αβ ImAβ)q

w
)
v, v

〉
.

Notice that the right-hand side of (2.9) may be written as

⟨(Hpq − 2isskewq +mp)wv, v⟩+ ⟨R0v, v⟩ , where R0 ∈ Ψ0(R3).

Split v as

v = v>>λ + v<<λ := χ|ξ|+|τ |>λ(∂)v + χ|ξ|+|τ |<λ(∂)v,

and recall that q,m are both supported at frequencies |ξ| ≥ λ. By choosing γ large enough, the sharp G̊arding
inequality yields that

⟨(Hpq − 2isskewq +mp)wv, v⟩ ≳
〈(

χ|ξ|>λ⟨x⟩−2(|ξ|2 + τ2)
)w

v>>λ, v>>λ

〉
− ∥v>>λ∥2H1/2

t,x
+ ⟨Sv, v⟩ , where S ∈ Ψ−∞(R3).

Integrating by parts one time gives that〈(
χ|ξ|>λ⟨x⟩−2(|ξ|2 + τ2)

)w
v>>λ, v>>λ

〉
≳ ∥∂v>λ∥2LE<2R0

+ ⟨R1v>>λ, v>>λ⟩ , where R1 ∈ Ψ1(R3).

All together, the right-hand side of (2.9) is bounded below by a multiple of

∥∂v>λ∥2LE<2R0
− |⟨R1v>>λ, v>>λ⟩| − ∥v>>λ∥2H1/2

t,x
− |⟨R0v, v⟩| .
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Bounding the errors is performed using Plancherel’s theorem. With more specificity, one may utilize the
standard Sobolev mapping properties of pseudodifferential operators, the frequency localization, and the
compact spatial support of v to obtain that

|⟨R1v>>λ, v>>λ⟩|+ ∥v>>λ∥2H1/2
t,x

≲ λ−1 ∥v∥2LE1 .

One shows that

|⟨R0v, v⟩| ≲ C(λ) ∥v∥2L2L2

in a similar manner, except that one cannot leverage frequency localization and may incur an implicit
constant which depends on λ. Such a term will appear on the upper bound side of (2.8), so having such an
implicit constant is permissible.

Summarizing, we have shown that the right-hand side of (2.9) is bounded below by a multiple of

∥∂v>λ∥2LE<2R0
− C(λ) ∥v∥2L2L2 − λ−1 ∥v∥2LE1 .(2.10)

Next, we consider the left-hand side of (2.9). By the Cauchy-Schwarz and Plancherel’s theorem,〈
Pv,

(
qw − i

2
mw

)
v

〉
=

〈
Pv,

(
qw − i

2
mw

)
v>>λ

〉
+ ⟨Sv, v⟩ , S ∈ Ψ−∞(R3)

≲ C(λ)
(
∥Pv∥LE∗

c
∥v∥LE1 + ∥v∥2L2L2

)
.

By once again applying frequency splitting, the remaining inner products on the left-hand side of (2.9) are
of the form

(γ + γ2)
(〈

R̃0v, v
〉
+

〈
R̃1v>>λ, v>>λ

〉)
, R̃j ∈ Ψj(R3).

We have discussed how to bound both of these terms; namely,∣∣∣〈R̃0v, v
〉∣∣∣+ ∣∣∣〈R̃1v>>λ, v>>λ

〉∣∣∣ ≲ C(λ) ∥v∥2L2L2 + λ−1 ∥v∥2LE1 .

Factoring in the scalar coefficients of these inner products, we have demonstrated that the left-hand side of
(2.9) is bounded above by a multiple of

C(λ, γ)
(
∥Pv∥LE∗

c
∥v∥LE1 + ∥v∥2L2L2

)
+ γ2λ−1 ∥v∥2LE1(2.11)

Combining (2.10)-(2.11) in application to (2.9) and completing the LE1 norm on the lower-bound side
provides (2.8). □

2.2. Remaining Frequency Analyses and Two-Point Local Energy Decay. In order to establish
Theorem 1.11, we require similar estimates in the low and medium frequency regimes. The damping does
not play a meaningful role in either regime, as it may be treated as a lower-order perturbation term. Like
in [Kof23], the relevant estimates from [MST20] carry through. We will briefly summarize why this is the
case, in lieu of full proofs.

At low frequencies, the obstruction to local energy decay arises when P has a resonance at frequency
zero (see Section 3 for a precise definition and further discussion on spectral obstructions to local energy
decay). A quantitative condition on the existence of corresponding zero resonant states is the following zero
non-resonance condition.

Definition 2.7. P is said to satisfy a zero non-resonance condition if there exists some K0, independent of
t, such that

∥u∥Ḣ1 ≤ K0 ∥P0u∥Ḣ−1 ∀u ∈ Ḣ1.(2.12)

The elliptic operator

P0 = P
∣∣
Dt=0

= (Dj +Aj)g
jk(Dk +Ak) +A0g

0j(Dj +Aj) + (Dj +Aj)g
j0A0 + (A0)

2g00 + V

represents P at time frequency zero, and we underscore that the damping does not appear. Hence, the
damping has no bearing on whether or not the zero non-resonance condition holds. For example, if P is
stationary and asymptotically flat with ImA ≡ 0, V > 0, and A0 = 0, then P satisfies the zero non-resonance
condition. This follows from Lemma 6.2iii in [MST20], which also features a more general condition. The
relevant low frequency estimate is the following, and the corresponding theorem in [MST20] is Theorem 6.1.
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Theorem 2.8. Let P be an asymptotically flat damped wave operator which satisfies the zero non-resonance
condition, and suppose that ∂t is uniformly time-like. Then, the bound

(2.13) ∥u∥LE1 ≲ ∥∂tu∥LE1
c
+ ∥Pu∥LE∗

for all u ∈ S(R4).

The proof of Theorem 2.8 leverages weighted elliptic estimates for the flat Laplacian ∆ in order to get
similar estimates for AF perturbations. Once again, the damping does not play a meaningful role. At
frequency zero, it provides no contribution, and near frequency zero, it is absorbed by the error term in
(2.13); the damping arises when estimating P0u by Pu within a compact spatial set.

At medium frequencies, we require a weighted estimate which implies local energy decay for solutions
supported at any range of time frequencies bounded away from both zero and infinity. This is rooted in
Carleman estimates. The Carleman weights which we need are constructed in e.g. [Boo18], [KT01]. The
main medium frequency estimate is the following, and the corresponding theorem in [MST20] is Theorem
5.4. We remark that the theorem does not imply an absence of embedded eigenvalues/resonances on the real
line.

Theorem 2.9. Let P be an asymptotically flat damped wave operator, and suppose that ∂t is uniformly
time-like. Then, for any δ > 0, there exists a bounded, non-decreasing radial weight φ = φ(ln(1 + r)) so that
for all u ∈ S(R4), we have the bound

(2.14)
∥∥∥(1 + φ′′

+)
1/2eφ

(
∇u, ⟨r⟩−1

(1 + φ′)u
)∥∥∥

LE
+

∥∥∥(1 + φ′)1/2eφ∂tu
∥∥∥
LE

≲ ∥eφPu∥LE∗ + δ
(∥∥∥(1 + φ′)1/2eφu

∥∥∥
LE

+
∥∥∥⟨r⟩−1

(1 + φ′′
+)

1/2(1 + φ′)eφ∂tu
∥∥∥
LE

)
,

with the implicit constant independent of δ.

The proof of this theorem utilizes two intermediate Carleman estimates within two different regions of
space, which may be combined using a cutoff argument in order to prove Theorem 2.9.

(1) Within a large compact set: The damping term is well-signed and readily absorbable as a
perturbation due to the conditions on the weight φ, which will be convex.

(2) Outside of a large compact set: Here, the damping is a small AF perturbation, so the proof
in [MST20] follows through without any modification. Within this region, the authors of [MST20]
bend the weight to be constant near infinity in order to apply exterior wave estimates. This leads
to breaking this case into three sub-regions: one where the Carleman weight is convex, a transition
region where the conditions break in order to bend the weight to be constant near infinity, and a
region near infinity where the weight is constant.

The proofs of the Carleman estimates in the above regions are based on positive commutator arguments
utilizing the self- and skew-adjoint parts of the conjugated operator Pφ = eφPe−φ.

The high, low, and medium frequency estimates are the key ingredients needed to establish Theorem
1.11. As in [MST20], [Kof23], it sufficient to remove the Cauchy data at times 0 and T in order to prove
Theorem 1.11; we will elaborate on this momentarily. This makes it significantly easier to perform frequency
localization. The pertinent result in [MST20] is Theorem 7.1.

Theorem 2.10. Let P be a stationary, asymptotically flat damped wave operator satisfying the geometric
control condition (2.1), and suppose that ∂t is uniformly time-like. Then, the estimate

∥u∥LE1 ≲ ∥Pu∥LE∗(2.15)

holds for all u ∈ S(R4).

Proof. We will utilize a time-frequency partition of unity. Let 0 < τ0 ≪ 1 and τ1 ≫ 1, which will be chosen
with more precision shortly. Then, we can write

u = χ|τ |<τ0(Dt)u+ χτ0<|τ |<τ1(Dt)u+ χ|τ |>τ1(Dt)u =: Q1u+Q2u+Q3u.

Since P is stationary, it commutes with each Qj , and so it suffices to show that

(2.16) ∥Qju∥LE1 ≲ ∥Pu∥LE∗ , j = 1, 2, 3.
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First, we apply Theorem 2.13 to Q1u and appeal to Plancherel’s theorem in order to obtain that

∥Q1u∥LE1 ≲ ∥∂t(Q1u)∥LE1
c
+ ∥P (Q1u)∥LE∗ ≲ τ0 ∥Q1u∥LE1

c
+ ∥Pu∥LE∗ .

If τ0 is sufficiently small, then we may absorb the error term on the upper-hand side into lower-bound side,
which provides (2.16) for j = 1.

We proceed similarly with Q2u via Theorem 2.9:∥∥∥(1 + φ′′
+)

1/2eφ
(
∇Q2u, ⟨r⟩−1

(1 + φ′)Q2u
)∥∥∥

LE
+

∥∥∥(1 + φ′)1/2eφ∂tQ2u
∥∥∥
LE

≲ ∥eφP (Q2u)∥LE∗ + δ
(∥∥∥(1 + φ′)1/2eφQ2u

∥∥∥
LE

+
∥∥∥⟨r⟩−1

(1 + φ′′
+)

1/2(1 + φ′)eφ∂tQ2u
∥∥∥
LE

)
≲ ∥eφPu∥LE∗ +

δ

τ0

∥∥∥(1 + φ′)1/2eφ∂tQ2u
∥∥∥
LE

+ δτ1

∥∥∥⟨r⟩−1
(1 + φ′′

+)
1/2(1 + φ′)eφQ2u

∥∥∥
LE

.

By choosing δ sufficiently small, last two terms absorb into the left-hand side. Since φ is bounded and φ′ ≥ 0,
we obtain (2.16) for j = 2.

Finally, we apply Theorem 1.10 to Q3u(t− T/2):

∥Q3u∥LE1[−T/2,T/2] ≲ ∥∂(Q3u)(−T/2)∥L2 +
∥∥∥⟨x⟩−2

u
∥∥∥
LE[−T/2,T/2]

+ ∥P (Q3u)∥LE∗[−T/2,T/2] .

Taking the limit as T → ∞ and then applying Plancherel’s theorem give that

∥Q3u∥LE1 ≲ τ−1
1 ∥Q3u∥LE1 + ∥Pu∥LE∗ .

If τ1 is large enough, then the error term on the right absorbs into the left, giving (2.16) for j = 3. □

We underscore how important it is that δ may be chosen arbitrarily in Theorem 2.9: It allowed for com-
patibility with the high and low frequency estimates regardless of how high or low the frequency thresholds
became, respectively (so long as they were away from zero and infinity).

As in Section 7 of [MST20], one proves that Theorem 2.10 implies Theorem 1.11 by fixing u and con-
structing a function v which matches the Cauchy data of u at times 0 and T (and satisfies an appropriate
bound) which allows one to apply (2.15) to u− v. This construction is performing using a partition of unity
on the support of u[0], u[T ], and Pu. In particular, one splits into an interior region {|x| < 4R0} and an
exterior region {|x| > 2R0}. The damping is non-problematic in the interior and is small in the exterior (as
with the other lower-order terms). The latter fact is important since a time reversal argument is used, which
makes the damping a driving force.

In the interior, one utilizes a unit time interval partition of unity {χj} and analyzes the equations
Pvj = χjf, matching the data at times 0 and T with the first and last of elements in the partition,
respectively. One then generates the desired approximate of u via

∑
χjvj . In the exterior region, one

chooses an appropriate small AF perturbation of 2 which matches P in the exterior. If one considers the
same differential equation (same data and forcing) but replaces P by the perturbation, one obtains good
bounds via local energy decay. By truncating the solution appropriately to |x| > R0 and t < T, one obtains
the desired approximate in the exterior.

2.3. An Energy Dichotomy. Here, we apply Theorem 1.11 in order to prove the energy dichotomy present
in Theorem 1.12. Very little deviation is needed from the strategy given in [MST20], although we must take
advantage of the damping in the damping-dominant case. In particular, we must use the damping to absorb
time derivative error terms for |x| ≤ 2R0, outside of which we may use asymptotic flatness (for space
derivative terms, one can use Young’s inequality for products, at the expense of shrinking ε). In the ε-almost
symmetric case, such interior errors are automatically small.

Proof. Split P and P0 into self- and skew-adjoint parts

P = P s + P a, P0 = P s
0 + P a

0 ,

respectively, and define the energy of the symmetric part of P as

Es[u](t) =

∫
R3

P s
0uū− g00|∂tu|2 dx.
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Then,

Es[u](t) = Es[u](0) + 2Re

t∫
0

∫
R3

∂suP su dxds.

Applying this to

E[u](t) =

∫
R3

P0uū− g00|∂tu|2 dx

and utilizing the symmetry assumptions yield that

E[u](t) = Es[u](0) + 2Re

t∫
0

∫
R3

∂suP su dxds+

∫
R3

P a
0 uū dx

(2.17)

= E[u](0)−
∫
R3

P a
0 u(0)u(0) dx+ 2Re

t∫
0

∫
R3

∂suf dxds− 2Re

t∫
0

∫
R3

∂suP au dxds+

∫
R3

P a
0 uū dx

= E[u](0) + 2Re

t∫
0

∫
R3

∂suf dxds− 2Re

t∫
0

∫
R3

∂suP au dxds+

t∫
0

∫
R3

∂s(P
a
0 uū) dx ds

= E[u](0) + 2Re

t∫
0

∫
R3

∂suf dxds− 2Re

t∫
0

∫
R3

∂suP au dxds− 2i Im

t∫
0

∫
R3

∂suP a
0 u dx ds

≤ E[u](0) + 2Re

t∫
0

∫
R3

∂suf dxds− C(ε, c)

t∫
0

∫
B2R0

(0)

Re a|∂su|2 dxds+D(ε, c) ∥u∥2LE1

where we have used the assumed symmetry assumptions in the last line, shrinking ε if necessary. In the above,
C(ε, c) > 0, and D(ε, c) = O(ε) in the almost-symmetric case (and C(ε, c) = 2), whereas D(ε, c) = O(c) in
the damping-dominant case.

Dropping the damping term from the above and pairing the result with (1.4) gives that

∥∂u∥2L∞L2[0,T ] ≲ ∥∂u(0)∥2L2 +
∥∥∂≤1u(T )

∥∥2
L2

c
+D(ε, c) ∥u∥2LE1[0,T ] +

T∫
0

∫
R3

|∂tu||f | dxdt,

where ∂≤1u :=
∑

|α|≤1

∂αu. The Schwarz inequality and Hölder’s inequality imply that

∥∂u∥L∞L2[0,T ] ≲ ∥∂u(0)∥L2 +
∥∥∂≤1u(T )

∥∥
L2

c
+ (δ +D(ε, c)) ∥u∥LE1[0,T ] + δ−1 ∥f∥LE∗+L1L2[0,T ] ,(2.18)

where δ > 0 is arbitrary. Now, we will make use of the two-point local energy estimate (1.2). By combining
(2.18) with (1.2) and choosing δ sufficiently small (and shrinking ε if necessary in the almost-symmetric
case), we obtain that

∥∂u(T )∥2L2 ≲ ∥∂u(0)∥2L2 +
∥∥∂≤1u(T )

∥∥2
L2

c
+ ∥f∥2LE∗+L1L2[0,∞) .

On the other hand, (1.2) directly gives that∥∥∂≤1u(t)
∥∥2
L2L2

c
≲ ∥u∥2LE1

c [0,T ] ≲ ∥∂u(0)∥2L2 + ∥∂u(T )∥2L2 + ∥f∥2LE∗+L1L2[0,∞) ,

and so

∥∂u∥2L2L2[0,T ] ≲ ∥∂u(T )∥2L2 + (T + 1)
(
∥∂u(0)∥2L2 + ∥f∥2LE∗+L1L2[0,∞)

)
.(2.19)

Notice that if we call E(T ) = ∥∂u∥2L2L2[0,T ] , then (2.19) gives that

E′(T ) = ∥∂u(T )∥2L2 ≥ αE(T )− (T + 1)
(
∥∂u(0)∥2L2 + ∥f∥2LE∗+L1L2[0,∞)

)
,(2.20)
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where α > 0 is a constant.
We will consider two cases. First, we assume that

E(T ) < 2α−1(T + 1)
(
∥∂u(0)∥2L2 + ∥f∥2LE∗+L1L2[0,∞)

)
for all T > 0. In such a case, we have that, in particular,

T−1 ∥∂u∥2L2L2[0,T ] ≲ ∥∂u(0)∥2L2 + ∥f∥2LE∗+L1L2[0,∞) .

By the mean-value theorem for integrals, there exists a sequence (Tj) so that Tj → ∞ as j → ∞, and

∥∂u(Tj)∥2L2 ≲ ∥∂u(0)∥2L2 + ∥f∥2LE∗+L1L2[0,∞) .

We may use (1.2) and let Tj → ∞ to conclude that local energy decay holds.
Next, we consider if

E(T ′) ≥ 2α−1(T ′ + 1)
(
∥∂u(0)∥2L2 + ∥f∥2LE∗+L1L2[0,∞)

)
(2.21)

for some T ′ > 0. Then, E(T ) must bound (2.21) from above for all T ≥ T ′, since (2.20) implies that E(T )
is increasing for all T > T ′. By applying an integrating factor argument to the differential inequality (2.20)
and using (2.21), we get that

E(T ) ≳T ′ eαT
(
∥∂u(0)∥2L2 + ∥f∥2LE∗+L1L2[0,∞)

)
, T ≥ T ′, T ′ ≫ 1.

Combining this with (2.19) gives the exponential growth for large enough T . □

3. Resolvent Theory and Local Energy Decay

In this section, we will introduce the spectral theory required to prove Theorem 1.14. This follows from
the resolvent formalism introduced in [MST20] and the corresponding scattering theory. We will summarize
the relevant parts of their work here and provide details that were either omitted or are instructive to repeat.
In particular, the results necessary to prove Theorem 1.14 are based on the same frequency estimates present
in both [MST20] and here, so our work requires little deviation. Throughout this section, we assume that P
is stationary.

Consider Pu = 0. One arrives at the stationary problem by studying “mode solutions” of the form
u(t, x) = uω(x)e

iωt, where ω ∈ C (equivalently, one replaces Dt by ω). Plugging such u into the given
homogeneous equation generates the stationary equation

Pωuω = 0, where Pω = ∆g,A +W (x,Dx) + ωB(x,Dx) + g00ω2,

and

∆g,A = (Dj +Aj)g
jk(Dk +Ak),

W (x,Dx) = A0g
0j(Dj +Aj) + (Dj +Aj)g

j0A0 + (A0)
2g00 + V,

B(x,Dx) = g0j(Dj +Aj) + (Dj +Aj)g
j0 + 2A0g

00 + ia.

The resolvent Rω is defined as the inverse of Pω when such an inverse exists. More explicitly, if we consider
the homogeneous Cauchy problem

Pu = 0, u(0) = 0, −g00∂tu(0) = f,

then we may formally define Rω via the Fourier-Laplace transform of u, i.e.

Rωf =

∞∫
0

e−iωtu(t) dt =: Ft→ω(1[0,∞)(t)u), ω ∈ C.

One may check via formal integration by parts that both definitions of Rω are consistent. In this section,
we will take f to be in either L2 or LE∗, and it will be clear from context which is the case. It remains to
make rigorous sense of Rω as a well-defined bounded operator.

From the global energy bounds and Gronwall’s inequality, it follows that u satisfies the crude estimate

(3.1) ∥∂u(t)∥L2 ≲ ect ∥f∥L2 , c ≥ 0.
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Using (3.1) and the Minkowski integral inequality, we obtain that

∥Rωf∥Ḣ1 ≤
∞∫
0

eImωt ∥∇u(t, ·)∥L2 dt ≲

∞∫
0

eImωtect ∥f∥L2 dt ≲ | Imω + c|−1 ∥f∥L2 , Imω + c < 0.(3.2)

Meanwhile, integrating by parts once provides that ωRωf = −iFt→ω(1[0,∞)∂tu). Taking the L2 norm of the
above and performing the same work as in (3.2) yields an identical upper bound. Combining these estimates
together gives the inequality

∥Rωf∥Ḣ1
ω
≲ | Imω + c|−1 ∥f∥L2 , Imω + c < 0.(3.3)

Hence, we may validly define the resolvent as a bounded operator from L2 to Ḣ1
ω, provided that ω is in the

range given in (3.3). Notice that if the uniform energy bound (1.3) holds, then the resolvent is holomorphic
in the lower half-plane H := {ω ∈ C : Imω < 0} and satisfies the bound

∥Rω∥L2→Ḣ1
ω
≲ | Imω|−1, ω ∈ H.(3.4)

If the uniform energy bound does not hold, then one is only guaranteed meromorphic continuation to H. Due
to this tie-in with uniform energy bounds, we will refer to (3.4) as the uniform energy resolvent bound. There
is also an analogous resolvent bound to local energy decay, which we state as a theorem and will not prove
here; see the proof of Theorem 2.3 in [MST20] for more. It is largely a consequence of Plancherel’s theorem,
along with utilization of facts which we will discuss after the statement of the theorem. The damping plays
no meaningful role here.

Theorem 3.1. Local energy decay holds for a stationary damped wave operator P if and only if Rω satisfies
the local energy resolvent bound

∥Rω∥LE∗→LE1
ω
≲ 1, ω ∈ H.(3.5)

We observe that if the uniform energy resolvent bound holds, then the local energy resolvent bound holds
for Imω ≲ −1, since

∥Rωf∥LE1
ω
≲ ∥Rωf∥Ḣ1 + |ω| ∥Rωf∥L2 = ∥Rωf∥Ḣ1

ω
≲ | Imω|−1 ∥f∥L2 ≲ ∥f∥LE∗ .(3.6)

On the other hand (3.5) implies (3.4); Fredholm theory implies that Rω is bounded and holomorphic from

L2 to Ḣ1
ω, and the precise operator norm bound can by obtained by splitting f ∈ L2 as

f = χ<| Imω|−1f + χ>| Imω|−1f,

then using (3.5) and (3.3). Hence, the uniform energy and local energy resolvent bounds have close relation.
We previously alluded to two spectral obstructions to local energy decay (and hence local energy resolvent
bounds), which we outline more precisely now.

Elements in the kernel of Pω living in L2 correspond to finite rank poles ω of Rω. Given that Pω is an
elliptic operator, such eigenfunctions live in Hs for all s ∈ R, yet the corresponding mode solution to Pu = 0
must possess exponential growth in time since ω ∈ H. In particular, the initial energy is finite, yet both
terms on the lower-bound side of the local energy decay estimate (1.1) are unbounded as T → ∞. This
behavior violates both uniform energy bounds and local energy decay. Since the eigenvalues have negative
imaginary part, we will call these negative eigenfunctions.

Definition 3.2. A negative eigenfunction for P is a non-zero uω ∈ L2 such that Pωuω = 0, with ω ∈ H.

The corresponding eigenvalues are isolated and contained within a relatively compact set in H, which
follows due to (3.3) and the high frequency estimate (1.5).

Next, we notice that the local energy resolvent bound must hold uniformly up to the real line in order to
obtain local energy decay, per Theorem 3.1. To that end, we have another potential obstruction - a failure
to obtain the continuous extension of Rω to R. First, we consider when one takes the limit as the spectral
parameter approaches a non-zero real value.

Definition 3.3. An embedded resonant state for P is a non-zero uω ∈ LE1
ω, with ω ∈ R \ {0} being the

corresponding embedded resonance, satisfying the outgoing/Sommerfeld radiation condition

(3.7)
∥∥∥⟨x⟩−1/2

(∂r + iω)uω

∥∥∥
L2(Aj)

→ 0 as j → ∞
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such that

Pωuω = 0.

The outgoing radiation condition as stated here is a variant of the standard one, adapted to the dyadic
structure of our spaces. It acts as a boundary condition at infinity to ensure unique solutions to the above
problem for a fixed ω. Such states are subtle obstructions, since the corresponding mode solution does not
generally have finite energy (as uω is only guaranteed to live in LE1

ω). However, as explained in [MST20], one
may perform a truncation procedure and utilize normalized/Regge-Wheeler-type coordinates (see [Tat13])
to produce functions χ>1(t − r)eiωtuω whose energy exhibits a growth rate of t1/2 yet whose image under
P lives in L1L2. Hence, they represent an explicit obstruction to uniform and local energy bounds. The
non-existence of embedded resonant states is equivalent to (3.5) near the punctured real line and to a limiting
absorption principle. In our context, the corresponding result is as follows.

Theorem 3.4. Let P be a stationary, asymptotically flat damped wave operator which satisfies the geomet-
ric control condition and is either weakly ε-damping dominant for some ε > 0 or ε-weakly magnetic with
ε ≪R0,M0

1. Additionally, assume that ∂t is uniformly time-like. For any ω0 ∈ R \ {0}, the following are
equivalent:

(1) ω0 is not a resonance.
(2) The bound

∥u∥LE1
ω0

≲ ∥Pω0u∥LE∗

holds for all u ∈ LE1
ω0

satisfying the outgoing radiation condition (3.7).
(3) The local energy resolvent bound (3.5) holds uniformly for ω ∈ H near ω0, and the limit

Rω0f = lim
H∋ω→ω0

Rωf, f ∈ LE∗

converges strongly on compact sets and satisfies the outgoing radiation condition (3.7).

We sketch the proof, as it is similar to that given in [MST20] for their version of the result (which is
Proposition 2.5 in their work); only minor alterations are necessary to account for the damping and the
lack of the non-trapping hypothesis. The result is perturbative of the work in [Kof23], just as the version in
[MST20] was perturbative of the case where P = 2g.

Proof. First, consider when A, V ≡ 0 and a ≡ 0 for |x| > 2R0. In this scenario, we are in the setting of
[Kof23] and obtain full local energy decay. By Theorem 3.1, we have the local energy resolvent bound (3.5),
in which case all three statements in Theorem 3.4 hold.

In general, let P̃ denote the principal part of P , and consider Q̃ = P̃ + χ<R0
iaDt. Note that our

starting case applies to Q̃, hence it satisfies local energy decay. Let R̃ω denote the resolvent of Q̃ω, which is

holomorphic in H and continuous up to the real line. We seek a solution to Pωu = f of the form u = R̃ωg

for some g (that is, u is in the range of the resolvent and hence outgoing). If Qω = Pω − Q̃ω, then

Pωu = f if and only if (I +QωR̃ω)g = f.

The family of operators QωR̃ω is compact from LE∗ to LE∗, holomorphic in the lower-half plane, and

continuous up to the real line. Further, I + QωR̃ω is invertible for − Imω ≫ 1 by a Neumann series

argument; to see this, note that Qω is first-order, then use a similar estimate to (3.6). Thus, I +QωR̃ω is a
family of zero-index Fredholm operators. The conclusion of the theorem follows from the analytic Fredholm
theorem and its consequences. □

Next, we consider when the spectral parameter approaches 0. In this case, we must replace the outgoing
radiation condition (which is not meaningful when ω = 0) with a new condition which still limits the
asymptotics of the functions.

Definition 3.5. A zero resonant state for P is a non-zero u ∈ LE0 such that P0u = 0. If, in addition,
u ∈ L2, then we call u a zero eigenfunction.

Such resonant states are annihilated by P while having finite energy. However, they also possess an
unbounded LE1 norm as T → ∞, which violates local energy decay, as well as two-point local energy decay.
As shown in [MST20] (see Proposition 2.10 in their work), one also has an analogous characterization of a
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resonance at zero to that of the non-zero real resonances in Theorem 3.4. We record their result without
proof, for reasons which immediately follow the statement of the theorem.

Theorem 3.6. Let P be an asymptotically flat damped wave operator satisfying the geometric control con-
dition and ∂t be uniformly time-like. Then, the following are equivalent:

(1) 0 is not a resonance.
(2) The zero resolvent bound

∥u∥LE1 ≲ ∥P0u∥LE∗(3.8)

holds for all u ∈ LE1
0 .

(3) The zero non-resonance condition (2.12) holds.
(4) The local energy resolvent bound (3.5) holds uniformly for ω ∈ H near 0, and the limit

R0f = lim
H∋ω→0

Rωf, f ∈ LE∗

converges strongly on compact sets.
(5) The stationary local energy decay estimate

∥u∥LE1[0,T ] + ∥∂u∥L∞L2[0,T ] ≲ ∥∂u(0)∥L2 + ∥∂u(T )∥L2 + ∥∂tu∥LE[0,T ] + ∥Pu∥LE∗+L1L2[0,T ] ,

with the implicit constant being independent of T .

The damping does not arise in P0 and simply acts as an absorbable lower-order term when transitioning
back to P , so the added context of this paper has absolutely no effect on the work present in [MST20]. In
particular, we recover all of the same low frequency work, which is what is utilized for this theorem. Again,
we refer the reader to the aforementioned work for more.

Theorem 2.8 gives the implication (3) =⇒ (5), whereas repeating the proof of Theorem 2.8 on the
resolvent side produces (3) =⇒ (4). Next, we remark that the bound present in (3.8) is more directly related
to zero not constituting a resonance than the zero non-resonance condition (2.12). However, their equivalence
can be seen from the fact that P0 is an elliptic AF perturbation of the Laplacian.

Now that we have outlined the obstructions to local energy decay, we proceed with a proof of Theorem
1.14. By Theorem 3.1, it suffices to establish (3.5). Once again, we may follow [MST20], as the proof only
requires the resolvent theory and frequency estimates.

Proof of Theorem 1.14. Since there are no negative eigenfunctions, the resolvent is bounded and holomorphic
in H, which implies that

∥Rωf∥Ḣ1
ω
≤ C(Imω) ∥f∥LE∗ , ω ∈ H,

for some constant C(Imω) depending on Imω which is bounded away from the real line. This is not a uniform
bound and a priori may become unbounded as Imω → 0, but it does holds up to any neighborhood of R.
Similar to the work in (3.6), this implies the local energy resolvent bound (3.5) away from any neighborhood
of the real line. It remains to establish (3.5) within a strip in the lower half-plane sufficiently close to R. We
break this strip into three exhaustive cases.

Case I: |ω| ≫ 1

This is in the high frequency regime, motivating us to use the high frequency estimate (1.5), which is
applicable by hypothesis. Let u solve Pωu = f, and call v = eiωtu. Then, v solves Pv = g, where g = eiωtf.
We will apply the high frequency estimate to the interval [−T, 0]. More precisely, if we call ṽ(t, x) = v(t−T, x),
then this solves P ṽ = g̃, where g̃(t, x) = g(t− T, x). Applying Theorem 1.10 to ṽ provides that

∥ṽ∥LE1[0,T ] + ∥∂ṽ∥L∞L2[0,T ] ≲ ∥∂ṽ(0)∥L2 +
∥∥∥⟨x⟩−2

ṽ
∥∥∥
LE[0,T ]

+ ∥g̃∥LE∗+L1L2[0,T ] .

We immediately calculate that

∥ṽ∥LE1[0,T ] =

(
e2T Imω − 1

2 Imω

)1/2

∥u∥LE1
ω

∥∂ṽ∥L∞L2[0,T ] = ∥u∥Ḣ1
ω

∥∂ṽ(0)∥L2 = eT Imω ∥u∥Ḣ1
ω
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∥∥∥⟨x⟩−2
ṽ
∥∥∥
LE[0,T ]

=

(
e2T Imω − 1

2 Imω

)1/2 ∥∥∥⟨x⟩−2
u
∥∥∥
LE

∥g̃∥LE∗+L1L2[0,T ] = ∥f∥
( exp{(2T Imω)}−1

2 Imω )
−1/2

LE∗+( exp{(T Imω)}−1
Imω )

−1
L2

.

Plugging these calculations into the high frequency bound for ṽ and taking the limit as T → ∞ yields

∥u∥LE1
ω
+ | Imω|1/2 ∥u∥Ḣ1

ω
≲

∥∥∥⟨x⟩−2
u
∥∥∥
LE

+ ∥f∥LE∗+| Imω|1/2L2 .

For sufficiently large ω, the first term on the right absorbs into the first term on the left, which implies (3.5).

Case II: |ω| ≪ 1

Since zero is not a resonance, Theorem 3.6 implies that (3.5) holds for all ω sufficiently close to 0.

Case III: |ω| ≈ 1

Since there are no real resonances, Theorem 3.4 implies that (3.5) holds for all ω in this region.

Hence, (3.5) holds. □
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