What the Heck is a Distribution? A Survey For the Non-Analyst

Collin Kofroth

GMA Visions Seminar September 8, 2020

Historical Background on Distributions

- * Fourier \rightarrow Dirac \rightarrow Schwartz (1945)
- Goal was to make sense of things like the Dirac delta (meant to measure a point charge) i.e. mass distributions
- Also tie into things such as probability distributions, multipole expansions, etc.
- Will focus on tempered / Schwartz distributions

$$\delta(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ +\infty & \text{if } x = 0 \end{cases}$$
$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1$$

Schwartz Functions: $\mathcal{S}(\mathbb{R}^n)$

- <u>Idea</u>: Schwartz functions are smooth functions that decay faster than any polynomial
- * Schwartz space:

$$\mathcal{S}(\mathbb{R}^{n}) := \left\{ \varphi \in C^{\infty}(\mathbb{R}^{n}) : \forall \alpha, \beta \in \mathbb{N}^{n} \sup_{x} |x^{\alpha}D^{\beta}\varphi| < \infty \right\}$$
$$= \left\{ \varphi \in C^{\infty}(\mathbb{R}^{n}) : \forall k \in \mathbb{N} \sum_{|\alpha| \le k} \sup_{x} |\langle x \rangle^{k}D^{\alpha}\varphi| < \infty \right\}$$

- * Some examples:
 - A. $C_c^{\infty}(\mathbb{R}^n)$

B.
$$f(x) = e^{-|x|^2}$$

Some Properties of S

- * $\mathcal{S} \subset L^p$ for all $p \in [1,\infty]$, dense for $p \in [1,\infty)$
- * Countable family of norms $\|\varphi\|_k := \sum_{|\alpha| \le k} \sup_{x} |\langle x \rangle^k D^{\alpha} \varphi|$ which induce a metric $d(\varphi, \psi) = \sum_{k=0}^{\infty} 2^{-k} \frac{\|\varphi \psi\|_k}{1 + \|\varphi \psi\|_k}$, so that (\mathcal{S}, d) is complete
- * Equivalent convergence: $\varphi_j \to \varphi$ in \mathcal{S} iff $\|\varphi_j \varphi\|_k \to 0 \quad \forall k$

The Fourier Transform On \mathcal{S}

- * Given $f \in L^1$, define $\mathcal{F}f(\xi) := (2\pi)^{-n/2} \left[f(x)e^{-ix\cdot\xi} d\xi \right]$
- * Fourier transform *intertwines* differentiation and multiplication: for $\varphi \in \mathcal{S}$

 $\mathcal{F}(D_{j}\varphi)(\xi) = \xi_{j}(\mathcal{F}\varphi)(\xi), \quad \mathcal{F}(x_{j}\varphi)(\xi) = -D_{j}(\mathcal{F}\varphi)(\xi)$

- * $\mathscr{F}: \mathscr{S} \to \mathscr{S}$, and it is continuous, bijective, and unitary on L^2 (after bounded linear extension)
- Fourier inversion formula:

$$f(x) = (2\pi)^{-n/2} \int \hat{f}(\xi) e^{ix \cdot \xi} d\xi$$

What Are Schwartz Functions Good For?

- Dense in lots of the important spaces (e.g. L²), allow for formal calculations (IBP)
- Natural space to study Fourier transform, which is a powerful tool for solving linear PDEs in free space (PDE→ODE)

Application of Schwartz Functions: A Helmholtz Equation

 $(I - \Delta)\varphi = \psi, \qquad \varphi, \psi \in \mathcal{S}$

Idea Behind Distributions

- * Loose def. of δ comes from "pointwise approximation"
- * How to make sense of this convergence?
- Should emphasize "local properties" of functions

Tempered Distributions: S'

Tempered distributions:

 $\mathcal{S}' = \{ u : \mathcal{S} \to \mathbb{C} : u \text{ is linear and continuous} \}$

- * Continuity: $\exists_C \exists_k \forall_{\varphi \in \mathcal{S}} |\langle u, \varphi \rangle| \le C ||\varphi||_k \iff \langle u, \varphi_j \rangle \to \langle u, \varphi \rangle \text{ if } \varphi_j \to \varphi \text{ in } \mathcal{S}$
- * Topology: $u_j \to u$ in \mathcal{S}' iff $\langle u_j, \varphi \rangle \to \langle u, \varphi \rangle$ for all $\varphi \in \mathcal{S}$
- Some examples

• Schwartz functions: $\langle T_{\psi}, \varphi \rangle = \left[\psi(x)\varphi(x) \, dx \right]$

•
$$L^p$$
 functions: $\langle T_f, \varphi \rangle = \int f(x)\varphi(x) dx$

• Dirac delta: $\langle \delta_a, \varphi \rangle = \varphi(a)$

Some Operations on \mathcal{S}'

* Motivating the distributional derivative: for $\varphi, \psi \in \mathcal{S}$

$$\langle \psi', \varphi \rangle = \int_{-\infty}^{\infty} \psi'(x)\varphi(x) \, dx = -\int_{-\infty}^{\infty} \psi(x)\varphi'(x) \, dx = -\langle \psi, \varphi' \rangle$$

- * Differentiation: $\langle D^{\alpha}u, \varphi \rangle = (-1)^{|\alpha|} \langle u, D^{\alpha}\varphi \rangle$
- * Multiplication by a smooth function with polynomial growth in all derivatives:

 $\langle fu, \varphi \rangle := \langle u, f\varphi \rangle$

• Ex. $\langle x_j u, \varphi \rangle = \langle u, x_j \varphi \rangle$

Distributional Derivative Example: Heaviside

$$H(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\langle H', \varphi \rangle = - \langle H, \varphi' \rangle = - \int_{0}^{\infty} \varphi'(x) \, dx = \varphi(0) = \langle \delta, \varphi \rangle$$
$$H' = \delta$$

The Fourier Transform on \mathcal{S}'

- * Defined by duality: $\langle \mathcal{F}u, \varphi \rangle := \langle u, \mathcal{F}\varphi \rangle$
- * $\mathscr{F}: \mathscr{S}' \to \mathscr{S}'$ continuously and bijectively, and its adjoint is still its inverse
- * Still intertwines everything by duality
- ∗ "General" distributions don't play nice with ℱ
- * Example: Fourier representation of δ

 $\langle \mathscr{F}\delta, \varphi \rangle = \langle \delta, \mathscr{F}\varphi \rangle = \mathscr{F}\varphi(0) = \langle (2\pi)^{-n/2}, \varphi \rangle$ $\implies \mathscr{F}\delta = (2\pi)^{-n/2}$ $\implies \delta = (2\pi)^{-n/2} \mathscr{F}1$

What Are Tempered Distributions Good For?

- * Solving PDEs in a *weak sense*
 - L^2 -based Sobolev spaces: $H^s = \{ u \in \mathcal{S}' : \langle \xi \rangle^s \hat{u} \in L^2 \}$
- Notion of weak solution is natural setting for finite element methods (caveats: use "general" distributions defined on compact domains)

Revisiting The Helmoltz Equation in \mathcal{S}'

Recall PDE $(I - \Delta)\varphi = \psi$, $\varphi, \psi \in \mathcal{S}$

Solution: $\varphi = \mathscr{F}^{-1}\left(\langle \xi \rangle^{-2} \mathscr{F} \psi\right)$

Some Resources

- Michael Taylor: "Partial Differential Equations I: Basic Theory" (chapter 4)
- * F.G. Friedlander and M. Joshi: "Introduction to the Theory of Distributions"
- * Lars Hörmander: "The Analysis of Linear Partial Differential Operators I"
- * Laurent Schwartz: "Théorie des distributions"
- * Robert Strichartz: "A Guide to Distribution Theory and Fourier Transforms"
- Walter Rudin: "Functional Analysis" (chapters 6-7)
- Gerald Folland: "Real Analysis: Modern Technique and Their Applications" (chapters 8-9)