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The Wave Equation

❖
Let         “Laplacian”

❖ Wave equation on : 

❖ Helpful for modeling many physical phenomena
❖ Fluids
❖ Acoustics
❖ Electromagnetic waves

❖ Quantum mechanics
❖ General relativity
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□ u = 0
u(0,x) = f(x)

∂tu(0,x) = g(x)



Variant: The Damped Wave Equation

❖ Recall damping force  from ODE mass-spring 
problem:

                           damping coefficient

❖ Force moves in opposite direction of velocity

❖ Example of a damping force: air resistance 

❖ The damped wave equation on :

where  is smooth, non-negative, and positive on an 
open set.

−αu′ 

{mu′ ′ + αu′ +ku = 0
m, α > 0, k ≥ 0

α =

ℝ+ × ℝn

□ u + a(x)∂tu = 0
u(0,x) = f(x)

∂tu(0,x) = g(x)

a



Energy Conservation

❖ Suppose that 

❖

❖ For every ,  and  are zero for large 

❖ Define 

❖ , and  is decreasing in 

❖ Proof: Take the derivative of  in . Equivalently, integrate  in space 
and time, then integrate by parts. Same for .

❖ Conclusions: 
❖ Solutions to the wave equation keep the same energy.
❖ Solutions to the damped wave equation lose energy.

❖ We’ll focus on the wave equation for now.

□ u = 0, □ v + a∂tv = 0
t u(t, x) v(t, x) |x |

E[w](t) = 1
2 ∫ |∂tw |2 + |∇w |2 dx

∀t>0E[u](t) = E[u](0) E[v](t) t

E[u] t ∂tu □ u
v



Local Energy Decay for the Wave Equation

❖ Although energy is conserved for solutions to the wave equation, it will 
decay within bounded spatial sets. 

❖ Under the previous assumptions, solutions satisfy

    

provided . This is called a local energy decay estimate. 

❖ This is proved by multiplying  by something more complicated and 
doing clever integration by parts. 

❖ Utility:
❖ Important measure of dispersion (how the wave spreads out over time)
❖ Can aid in obtaining long-time existence for nonlinear problems

sup
R>0

∞

∫
0

∫
|x|≤R

|R−1/2∂tu |2 + |R−1/2 ∇u |2 + |R−3/2u |2 dxdt ≤ CE[u](0)

n ≥ 3
□ u



Adding Spacetime Geometry
❖ Many applications include background geometry.
❖ We will consider the spacetime , but we’ll let it be curved (have a metric tensor). This forms  

into a Lorentzian manifold.
❖ One must adapt the equations to the geometry

❖
Ex. 

❖ components of the inverse metric tensor 
❖ For the original wave equation, 

❖ Assumption: metric is asymptotically flat
❖ Important result: If the metric is very close 

to being flat, then LED holds.
❖ Question: What about larger variations?

ℝ4 ℝ4
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Obstructions to LED

1. Trapping: null geodesics (paths in spacetime that light follow) stay in a  
compact set

❖ Example: blackholes

❖ Trapping implies no LED

2. Bad spectrum

❖ Eigenvalues whose eigenvectors (eigenfunctions) have growth

These turn out to be the only obstructions for (stationary) asymptotically 
flat problems (ref: Metcalfe, Sterbenz, Tataru ’20)! Since trapping 
backgrounds are physically relevant, we’d like to remove the non-
trapping hypothesis.



Back to Damping
❖ Hope: damping “removes energy,” so (maybe) we can allow for trapping and still get LED.
❖ Issue: what if the damping never affects trapped trajectories?
❖ New assumption: the geometric control condition

“every bounded null geodesic intersects  in finite time”
❖  Mathematically, trapping comes into play for waves with high frequencies. One must prove an 

estimate using another multiplier argument. These multipliers are called pseudodifferential 
operators and are constructed using tools from microlocal analysis.

{x : a(x) > 0}

Geometric control on the torus .2 = /1 × /1


