Scattering, Resonances, and Wave Equations

Collin Kofroth

GMA Visions Seminar February 23, 2021

About Me

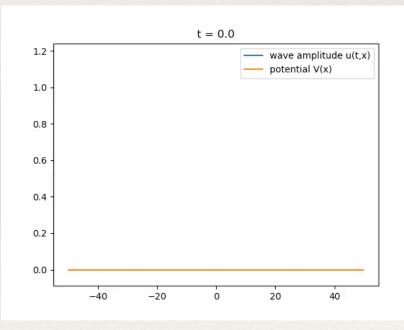
- * 4th year
- Advisor: Jason Metcalfe
- * Area of research: analysis of PDEs
 - * Specific area: Local energy decay of damped waves on asymptotically flat space-times
- * Comps taken: Analysis, geo/topo, sci comp
- First year courses relevant to research: analysis, geo/topo, some tools from methods of applied math
- * Other important tools: PDEs (obv), functional analysis, spectral theory, microlocal analysis

Why Scattering?

- Utilizes some first-year analysis (especially complex analysis
 I'll point out where explicitly)
- Courses important to study scattering: real/complex analysis, functional analysis, PDEs
- * Lively area of research within analysis of PDEs
 - * Significant ties to semiclassical analysis (big here!)
- Relevant area within department: talk to Jeremy Marzuola, Hans Christianson

What is Scattering Theory?

- * What happens when a particle or wave encounters something that may force it to deviate from its original behavior?
- Three main types
 - * Obstacle scattering (common perspective for classical scattering): what happens when a particle hits something?
 - * Potential scattering (common perspective for quantum scattering): what happens when a particle (or wave) encounters a potential?
 - * Geometric scattering: what happens if we perturb the geometry (metric)?
- * Applications in
 - * Quantum mechanics
 - * General relativity
 - Medical imaging (somehow)



Courtesy of Peter Hintz

Objects of Interest: Resonances

- Sort of like eigenvalues, but for equations on unbounded domains
 - Along with telling us about oscillation rates, resonances carry on info on decay rates.
 - * Resonance expansion:

$$u(t, x) \sim \sum e^{-i\tau_j t} a_j(x), \qquad \tau_j \in \mathbb{C}$$

 $\tau_j = \text{resonances}$

vs.

Fourier expansion on compact spatial domain:

$$u(t, x) \sim \sum e^{i\lambda_j x} (e^{i\lambda_j t} a_j + e^{-i\lambda_j t} b_j), \qquad \lambda_j \in \mathbb{R}$$
$$\lambda_j = \text{eigenvalues}$$

* They come from poles of an operator-valued function called the resolvent (really its meromorphic continuation).

Local Energy Decay

* Local energy functional for compact $K \subset \mathbb{R}^3$

$$E_{K}[u](t) = \int_{K} |\partial_{t}u(t,x)|^{2} + |\nabla_{x}u(t,x)|^{2} dx$$

- This will decay exponentially, according to our expansion (provided each resonance lies in the lower half plane). This occurs because R³ is not compact. Energy is escaping to infinity!
- In the compact setting, solutions do not decay exponentially, and energy is constant.

Some Notation

$$L^{2}(\mathbb{R}^{3}) = \{f \colon \mathbb{R}^{3} \to \mathbb{C} \mid \int_{\mathbb{R}^{3}} |f(x)|^{2} dx < \infty\}$$

* $H^2(\mathbb{R}^3) = \{ f \in L^2(\mathbb{R}^3) \mid \partial^{\alpha} f \in L^2(\mathbb{R}^3) \text{ for all } |\alpha| \le 2 \}$

- * $L^{\infty}(\mathbb{R}^3) = \{ f : \mathbb{R}^3 \to \mathbb{C} \mid \exists M \text{ s.t. } |f| \le M \text{ a.e.} \}$
- * I'll say $f = \mathcal{O}(g) \iff (\exists C)(\forall x \gg 1) | f(x) | \le C | g(x) |$
- * *c* subscripts denote compact support, *loc* subscripts mean that elements are in the un-subscripted space for every compact set
- Any time I say "operator," I mean bounded (i.e. continuous) linear operator.

Model Problem: Wave Equation

* Wave equation with potential:

$$(\partial_t^2 - \Delta + V) u = 0, \qquad V \in L_c^{\infty}(\mathbb{R}^3, \mathbb{C}), \qquad \Delta = \sum_{j=1}^3 \partial_{x_j}^2$$
$$u(0) = 0, \qquad \partial_t u(0) = f \in L_c^2(\mathbb{R}^3)$$
$$u = 0 \text{ for } t < 0$$

* Proceed formally: take the Fourier-Laplace transform in time

$$(-\tau^2 - \Delta + V)\hat{u}(\tau) = f, \quad \text{Im } \tau > 0$$

* Solve for \hat{u} by inverted operator: $R(\tau) = (-\tau^2 - \Delta + V)^{-1}$, $\operatorname{Im} \tau > 0$

Invert Fourier transform: $u(t) = (2\pi)^{-1} \int e^{-i\tau t} R(\tau) f d\tau$, M > 0Im $\tau = M$

- * I *may* have cheated in two places:
 - * When can I invert that operator?
 - * Can I really invert the Fourier transform? And how do I use it to get the resonance expansion?

The Free Resolvent

- * Starting point for operator inversion is our equation no potential: $(-\tau^2 \Delta)u = f$
- * Solve using Fourier analysis to get family of operators called the free resolvent

$$R_{0}(\tau) = (-\tau^{2} - \Delta)^{-1} : L^{2}(\mathbb{R}^{3}) \to H^{2}(\mathbb{R}^{3}), \qquad \text{Im } \tau > 0$$
$$R_{0}(\tau)f(x) = \int_{\mathbb{R}^{3}} \frac{e^{i\tau|x-y|}}{4\pi|x-y|} f(y) \, dy$$

* As family of operators, this has analytic continuation to $\tau \in \mathbb{C}$, now as a function

 $R_0(\tau): L^2_c(\mathbb{R}^3) \to H^2_{loc}(\mathbb{R}^3) \quad \text{i.e.} \quad \rho R_0(\tau)\rho: L^2(\mathbb{R}^3) \to H^2(\mathbb{R}^3) \qquad \forall \rho \in C^\infty_c(\mathbb{R}^3)$

* Connect back to wave equation: use Cauchy's theorem to deform the contour $u(t) = (2\pi)^{-3} \int e^{-i\tau t} R_0(\tau) f(\tau) d\tau = \mathcal{O}_{L^2(K)}(e^{-Mt}), \quad \text{any } M > 0, K \text{ compact}$ $\operatorname{Im} \tau = -M$

* Compare to Sharp Huygen's Principle: $u \equiv 0$ within any compact set $K \subset \mathbb{R}^3$ for all $t \ge T_K$

The Free Resolvent Continued: Closer Look at ${\mathbb R}$

* Consider the branch of the square root that cuts out the non-negative real axis and maps into the upper half plane and call $\widetilde{R_0}(\tau) = R_0(\sqrt{\tau})$. Then,

$$u_{\pm}(x) = \lim_{\epsilon \to 0^+} \widetilde{R_0}(\tau \pm i\epsilon) f(x) = \int_{\mathbb{R}^3} \frac{e^{\pm i\sqrt{\tau}|x-y|}}{4\pi |x-y|} f(y) \, dy, \qquad \tau > 0, \quad f \in C_c^{\infty}(\mathbb{R}^3)$$

* Facts about u_{\pm} :

- * We call u_{\pm} the outgoing/incoming solutions, and they are the unique solutions to our equation with these conditions.
- * This is called the qualitative limiting absorption principle. Better estimates on such limits are related to the quantitative limiting absorption principle.

Fredholm Theory

- * A Fredholm operator is a bounded linear map *A* between Banach spaces such that dim ker *A*, dim coker $A < \infty$, *R*(*A*) closed.
- * Fredholm operators are invertible modulo compact operators.
- Families of operators are analytic iff complex differentiable in norm iff they have a power series expansion. Meromorphicity is defined using Laurent series.
- * Analytic Fredholm Theorem: If $\{A(z)\}_{z \in \Omega}$ an analytic family of Fredholm operators and $A(z_0)^{-1}$ exists for some z_0 , then $z \mapsto A(z)^{-1}$ is a meromorphic family of Fredholm operators with poles of finite rank.

The Scattering Resolvent

Add in the potential: $(-\tau^2 - \Delta + V) u = f, \quad V \in L_c^{\infty}(\mathbb{R}^3, \mathbb{C})$

- * The desired inverse of $P(\tau)$, denoted $R(\tau)$, is called the scattering resolvent.
- * For large Im τ , $R_0(\tau)$ gives an approximate inverse to $R(\tau)$, so

 $R(\tau) = (-\tau^2 - \Delta + V)^{-1} : L^2(\mathbb{R}^3) \to H^2(\mathbb{R}^3), \qquad \text{Im}\,\tau \gg 1$

- * Using Fredholm theory, this has meromorphic continuation to $\tau \in \mathbb{C}$, now as a function $R(\tau) : L_c^2(\mathbb{R}^3) \to H_{loc}^2(\mathbb{R}^3)$.
- * The poles of this continuation are called (scattering) resonances. I will assume that they are simple on the next slide.
- * **Theorem**: $\tau \neq 0$ is a resonance iff $P(\tau)u = 0$ for some non-zero, outgoing *u* (outgoing in the sense before or, equivalently, in the range of $R_0(\tau)$).
- * **Theorem**: if τ is not a resonance, then $u = R(\tau)f$ is the unique outgoing solution to

 $P(\tau)u = f, \qquad f \in L^2_c(\mathbb{R}^3)$

Resonance Expansions

- * For Im τ large enough, we can make sense of our Fourier inversion as an element of $L^2_{loc}(\mathbb{R}^+, L^2(\mathbb{R}^3))$.
- * Contour shifting needs more care, but one can get estimates within resonance-free regions and choose a witty contour to show that for any A > 0, we have a finite sum

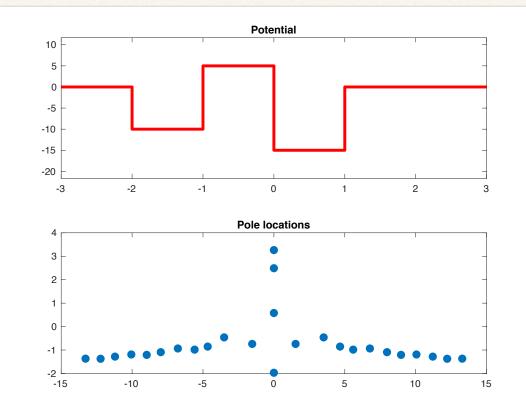
$$u(t,x) = \sum_{\text{Im } \tau_j > -A} e^{-i\tau_j t} a_j(x) + E_A(t), \qquad E_A = \mathcal{O}_{H^2_{loc}}(e^{-tA})$$

* τ_i = resonances, a_i = resonant states, $e^{-i\tau_j t}a_i$ = residues

* Re τ_i = rate of oscillation, - Im τ_i = rate of decay

Resonances with Different Potentials

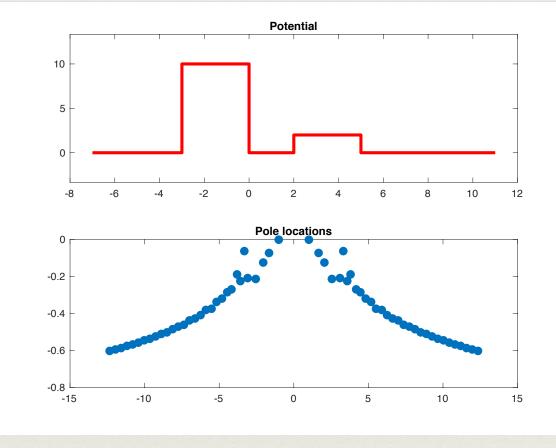
- Suppose that V is real-valued (generally what we care about).
 - * Resonances with positive imaginary part are purely imaginary and their squares are eigenvalues of $-\Delta + V$.
 - There are no non-zero real resonances (Rellich).



Credit: David Bindel's code

Resonances with Different Potentials

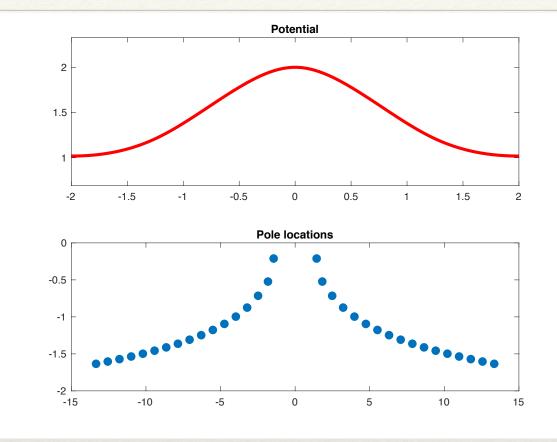
* If $V \ge 0$, then all non-zero resonances have negative imaginary part.



Credit: David Bindel's code

Resonances with Different Potentials

- * If $V \ge 0$ and V > 0 on an open set, then there are no real resonances.
- Via the resonance expansion, this implies exponential decay of the wave equation within compact sets.



Credit: David Bindel's code

Resonance Expansions In Geometric Scattering

- * De Sitter space: hyperbolic model of the universe ($\Lambda > 0$)
 - * Follows "similar" general procedure
- Black holes, even those with sufficiently small angular momentum (Kerr, Kerr-de Sitter)
 - * "Quasi-normal modes"
 - Follows "similar" general procedure
 - * Hard
 - * Trapping affects high frequency (large $|\text{Re } \tau|$) estimates, loss of information
- References: see various papers by András Vasy, Peter Hintz, and Semyon Dyatlov

Other Areas of Interest with Resonances

- Counting them
 - * Compare to Weyl law for counting eigenvalues
 - Very open area (asymptotics, lower bounds)
- Distribution of resonances / resonance-free regions
 - Related to resonance expansions
- Trace formulas
 - * Related to counting resonances (e.g. lower bounds)

Some References

- * **Dyatlov** and **Zworski** *Mathematical Theory of Scattering Resonances*
- * **Reed and Simon** *Methods of Modern Mathematical Physics, Vol. 3: Scattering Theory*
- * **Taylor** *Partial Differential Equations II: Qualitative Studies* of Linear Equations (see Ch. 9 for scattering by obstacles)
- * **Hörmander** *The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients* (see Ch. XIV)