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About Me

+ 4th year

+ Advisor: Jason Metcalfe

* Area of research: analysis of PDEs

* Specific area: Local energy decay of damped waves on
asymptotically flat space-times

* Comps taken: Analysis, geo/topo, sci comp

* First year courses relevant to research: analysis, geo/topo, some
tools from methods of applied math

* Other important tools: PDEs (obv), functional analysis, spectral
theory, microlocal analysis



Why Scattering?

+ Utilizes some first-year analysis (especially complex analysis
- I'll point out where explicitly)

* Courses important to study scattering: real / complex
analysis, functional analysis, PDEs

“ Lively area of research within analysis of PDEs
“ Significant ties to semiclassical analysis (big here!)

* Relevant area within department: talk to Jeremy Marzuola,
Hans Christianson



What is Scattering Theory?

* What happens when a particle or wave encounters
something that may force it to deviate from its original
behavior?

* Three main types

* Obstacle scattering (common perspective for classical
scattering): what happens when a particle hits
something?

+ Potential scattering (common perspective for
quantum scattering): what happens when a particle
(or wave) encounters a potential?

+ Geometric scattering: what happens if we perturb the
geometry (metric)?

* Applications in
+ Quantum mechanics
* General relativity

* Medical imaging (somehow)
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Objects of Interest: Resonances

- Sort of like eigenvalues, but for equations on unbounded domains

» Along with telling us about oscillation rates, resonances carry on info on decay
rates.

» Resonance expansion:
u(t, x) ~ Z e_”ftaj(x), T, €C

Tj = resonances

VS.

Fourier expansion on compact spatial domain:

u(t,x) ~ Y et ea;+ e Hb), L ER

4; = eigenvalues

» They come from poles of an operator-valued function called the resolvent (really
its meromorphic continuation).



Local energy functional for compact K C R’

E [ul(f) = J | du(t, x) |* + | V. u(t,x) |* dx
K

This will decay exponentially, according to our expansion
(provided each resonance lies in the lower half plane). This
occurs because R is not compact. Energy is escaping to infinity!

In the compact setting, solutions do not decay exponentially, and
energy 1s constant.



Some Notation

LAR)={f: R’ > C| [ | () |° dx < oo}

)

» HA(R3) = {fe LAR?)| o°f € LA(R3) forall |a| < 2}
» L%ARH={f: R’ > C| IMst.|f|<Mae.)}

¢ I'llsay f= 6(g) < (AC) Vx> D|f(x)| < C|gx)]

+ ¢ subscripts denote compact support, loc subscripts mean that
elements are in the un-subscripted space for every compact set

* Any time I say “operator,” I mean bounded (i.e. continuous)
linear operator.



Model Problem: Wave Equation

* Wave equation with potential:

-

(07 —A+V)u=0, Vel=“(R:C) A= Y0

u(0) =0, 0u(0) = f € LA(RY)
lu=0forzt<0

* Proceed formally: take the Fourier-Laplace transform in time
ALV =  Imrt >0

+ Solve for & by inverted operator: R(7) = (A Tl Imz >0

_ Invert Fourier transform: u(7) = Qn)~! J e " R(7)f dr, M >0
Im =M

* 1 may have cheated in two places:
* When can I invert that operator?

* Can I really invert the Fourier transform? And how do I use it to get the resonance expansion?



The Free Resolvent

« Starting point for operator inversion is our equation no potential: (—7° — A)u = f

* Solve using Fourier analysis to get family of operators called the free resolvent

Ry(v) = (=72 — A7l : LA(R%) » HX(R?), Imz >0

it|x—yl

R = | )y

R3

+ As family of operators, this has analytic continuation to 7 € C, now as a function

Rio)  EX(R) —He () e pRGep LR S HAR) Ve C(R)

* Connect back to wave equation: use Cauchy’s theorem to deform the contour

u(t) = )~ J €_inR0(T)f(T) adr = @LZ(K)(e_Mt), any M > 0, K compact
Imr=—m

« Compare to Sharp Huygen’s Principle: u = 0 within any compact set K C R? for all > T



The Free Resolvent Continved: Closer Look at R

+ Consider the branch of the square root that cuts out the non-negative real axis and maps into
the upper half plane and call Ry(7) = R, <\/~_c> Then,

u,(x) = lim Ry(z * ie)f(x) =

e—0

eii\/ax_ﬂ
{ f(y)dy, 750, fe o)

Ar|x —y|
R3

+ Facts about u,:

¢ (—1—Nuy=f

-

oiV/7l < 1 ) U (X) =0 (%)
ui(-x) = +0 2 —
<] <] 0% o =0(L)

+ We call u, the outgoing/incoming solutions, and they are the unique solutions to our
equation with these conditions.

+ This is called the qualitative limiting absorption principle. Better estimates on such limits are
related to the quantitative limiting absorption principle.



A is a bounded linear map A between Banach
spaces such that dim ker A, dim coker A < oo, R(A) closed.

Fredholm operators are invertible modulo compact operators.

Families of operators are itf complex differentiable in
norm iff they have a power series expansion. is
defined using Laurent series.

: If {A(2) }.cq an analytic family of
Fredholm operators and A(z,)~" exists for some z,, then
z +— A(z)”! is a meromorphic family of Fredholm operators with
poles of finite rank.



Add in the potential: (—7° — A+ V) u =, Ve LR C)

P()

+ The desired inverse of P(7), denoted R(z), is called the scattering resolvent.

* Por large Im 7, Ry(7) gives an approximate inverse to R(z), so

Bloi—r N1 I (R HR - T |

+ Using Fredholm theory, this has meromorphic continuation to 7 € C, now as a function

R(7) : LA (R%) — H? (RY).

loc

* The poles of this continuation are called (scattering) resonances. I will assume that they
are simple on the next slide.

« Theorem: 7 # () is a resonance iff P(7)u = 0 for some non-zero, outgoing u (outgoing in
the sense before or, equivalently, in the range of R,(7)).

+ Theorem: if 7 is not a resonance, then 1 = R(7)f is the unique outgoing solution to

Pu=f, feLiR®



Resonance Expansions

+ For Im 7 large enough, we can make sense of our Fourier
inversion as an element of L? (R*, L%(RY)).

* Contour shifting needs more care, but one can get estimates
within resonance-free regions and choose a witty contour to
show that for any A > 0, we have a finite sum

e — Z e‘ifftaj(x) = ol E, = @leoc(e_tA)
Im 7 =

& T.= resonances, a, = resonant states, e '%'a. = residues
j j j

# Re 7; = rate of oscillation, — Im 7; = rate of decay



Resonances with Different Potentials

- Suppose that V is real-valued

(generally what we care about).

* Resonances with positive
imaginary part are purely
imaginary and their squares
are eigenvalues of —A + V.

* There are no non-zero real
resonances (Rellich).
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Resonances with Different Potentials

«If V > 0, then all non-zero

resonances have negative
imaginary part.
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IfV >0 and V> 0onan
open set, then there are no
real resonances.

Via the resonance expansion,
this implies exponential
decay of the wave equation
within compact sets.
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De Sitter space: hyperbolic model of the universe (A > 0)
Follows “similar” general procedure

Black holes, even those with sufficiently small angular momentum (Kerr,
Kerr-de Sitter)

s 24

Follows “similar” general procedure
Hard

affects high frequency (large | Re 7|) estimates, loss of
information

References: see various papers by Andras Vasy, Peter Hintz, and Semyon
Dyatlov



Counting them
Compare to for counting eigenvalues
Very open area (asymptotics, lower bounds)

Distribution of resonances/resonance-free regions
Related to resonance expansions

Trace formulas

Related to counting resonances (e.g. lower bounds)



Some References

* Dyatlov and Zworski - Mathematical Theory of Scattering
Resonances

* Reed and Simon - Methods of Modern Mathematical
Physics, Vol. 3: Scattering Theory

* Taylor - Partial Differential Equations II: Qualitative Studies
of Linear Equations (see Ch. 9 for scattering by obstacles)

+ Hormander - The Analysis of Linear Partial Differential

Operators II: Differential Operators with Constant
Coefficients (see Ch. XIV)



