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About Me

❖ 4th year

❖ Advisor: Jason Metcalfe

❖ Area of research: analysis of PDEs


❖ Specific area: Local energy decay of damped waves on 
asymptotically flat space-times


❖ Comps taken: Analysis, geo/topo, sci comp

❖ First year courses relevant to research: analysis, geo/topo, some 

tools from methods of applied math

❖ Other important tools: PDEs (obv), functional analysis, spectral 

theory, microlocal analysis



Why Scattering?

❖ Utilizes some first-year analysis (especially complex analysis 
- I’ll point out where explicitly)


❖ Courses important to study scattering: real/complex 
analysis, functional analysis, PDEs


❖ Lively area of research within analysis of PDEs


❖ Significant ties to semiclassical analysis (big here!)


❖ Relevant area within department: talk to Jeremy Marzuola,  
Hans Christianson 



What is Scattering Theory?
❖ What happens when a particle or wave encounters 

something that may force it to deviate from its original 
behavior?


❖ Three main types


❖ Obstacle scattering (common perspective for classical 
scattering): what happens when a particle hits 
something?


❖ Potential scattering (common perspective for 
quantum scattering): what happens when a particle 
(or wave) encounters a potential?


❖ Geometric scattering: what happens if we perturb the 
geometry (metric)?


❖ Applications in


❖ Quantum mechanics


❖ General relativity


❖ Medical imaging (somehow)
Courtesy of Peter Hintz



Objects of Interest: Resonances

❖ Sort of like eigenvalues, but for equations on unbounded domains


❖ Along with telling us about oscillation rates, resonances carry on info on decay 
rates.


❖ Resonance expansion:                          


   

vs.


     Fourier expansion on compact spatial domain: 


        

❖ They come from poles of an operator-valued function called the resolvent (really 
its meromorphic continuation).

u(t, x) ∼ ∑ e−iτjtaj(x), τj ∈ ℂ

τj = resonances

u(t, x) ∼ ∑ eiλjx(eiλjtaj + e−iλjtbj), λj ∈ ℝ

λj = eigenvalues



Local Energy Decay

❖ Local energy functional for compact 

❖ This will decay exponentially, according to our expansion 
(provided each resonance lies in the lower half plane). This 
occurs because  is not compact. Energy is escaping to infinity!


❖ In the compact setting, solutions do not decay exponentially, and 
energy is constant.

K ⊂ ℝ3

EK[u](t) = ∫
K

|∂tu(t, x) |2 + |∇xu(t, x) |2 dx

ℝ3



Some Notation

❖

❖

❖

❖ I’ll say 

❖  subscripts denote compact support,  subscripts mean that 
elements are in the un-subscripted space for every compact set


❖ Any time I say “operator,” I mean bounded (i.e. continuous) 
linear operator.

L2(ℝ3) = {f : ℝ3 → ℂ | ∫
ℝ3

| f(x) |2 dx < ∞}

H2(ℝ3) = {f ∈ L2(ℝ3) | ∂αf ∈ L2(ℝ3)  for all  |α | ≤ 2}

L∞(ℝ3) = {f : ℝ3 → ℂ | ∃M s.t. | f | ≤ M a.e.}

f = 𝒪(g) ⟺ (∃C)(∀x ≫ 1) | f(x) | ≤ C |g(x) |

c loc



Model Problem: Wave Equation

❖ Wave equation with potential: 


❖ Proceed formally: take the Fourier-Laplace transform in time


❖ Solve for  by inverted operator: 

❖
Invert Fourier transform: 

❖ I may have cheated in two places:


❖ When can I invert that operator?


❖ Can I really invert the Fourier transform? And how do I use it to get the resonance expansion?

(∂2
t − Δ + V) u = 0, V ∈ L∞

c (ℝ3, ℂ), Δ =
3

∑
j=1

∂2
xj

u(0) = 0, ∂tu(0) = f ∈ L2
c (ℝ3)

u = 0 for t < 0

(−τ2 − Δ + V ) ̂u(τ) = f, Im τ > 0

̂u R(τ) = (−τ2 − Δ + V )−1, Im τ > 0

u(t) = (2π)−1 ∫
Im τ=M

e−iτtR(τ)f dτ, M > 0



The Free Resolvent

❖ Starting point for operator inversion is our equation no potential: 

❖ Solve using Fourier analysis to get family of operators called the free resolvent


❖ As family of operators, this has analytic continuation to , now as a function


     i.e.      


❖ Connect back to wave equation: use Cauchy’s theorem to deform the contour 

❖ Compare to Sharp Huygen’s Principle:   within any compact set  for all 

(−τ2 − Δ)u = f

R0(τ) = (−τ2 − Δ)−1 : L2(ℝ3) → H2(ℝ3), Im τ > 0

R0(τ)f(x) = ∫
ℝ3

eiτ|x−y|

4π |x − y |
f(y) dy

τ ∈ ℂ

R0(τ) : L2
c (ℝ3) → H2

loc(ℝ
3) ρR0(τ)ρ : L2(ℝ3) → H2(ℝ3) ∀ρ ∈ C∞

c (ℝ3)

u(t) = (2π)−3 ∫
Im τ=−M

e−iτtR0(τ)f(τ) dτ = 𝒪L2(K)(e−Mt),  any  M > 0, K compact

u ≡ 0 K ⊂ ℝ3 t ≥ TK



The Free Resolvent Continued: Closer Look at ℝ

❖ Consider the branch of the square root that cuts out the non-negative real axis and maps into 
the upper half plane and call . Then,

❖ Facts about :


❖

❖

❖ We call  the outgoing/incoming solutions, and they are the unique solutions to our 
equation with these conditions.


❖ This is called the qualitative limiting absorption principle. Better estimates on such limits are 
related to the quantitative limiting absorption principle.

R̃0(τ) = R0 ( τ)
u±(x) = lim

ϵ→0+
R̃0(τ ± iϵ)f(x) = ∫

ℝ3

e±i τ|x−y|

4π |x − y |
f(y) dy, τ > 0, f ∈ C∞

c (ℝ3)

u±

(−τ − Δ)u± = f

u±(x) ∼
e±i τ|x|

|x |
+ 𝒪 ( 1

|x |2 ) ⟹
u±(x) = 𝒪 ( 1

r )
(∂r ∓ i τ)u±(x) = 𝒪 ( 1

r2 )
u±



Fredholm Theory

❖ A Fredholm operator is a bounded linear map  between Banach 
spaces such that .

❖ Fredholm operators are invertible modulo compact operators.


❖ Families of operators are analytic iff complex differentiable in 
norm iff they have a power series expansion. Meromorphicity is 
defined using Laurent series. 


❖ Analytic Fredholm Theorem: If  an analytic family of 
Fredholm operators and  exists for some , then 

 is a meromorphic family of Fredholm operators with 
poles of finite rank.

A
dim ker A, dim coker A < ∞, R(A) closed

{A(z)}z∈Ω
A(z0)−1 z0

z ↦ A(z)−1



The Scattering Resolvent

❖
Add in the potential: 

❖ The desired inverse of , denoted , is called the scattering resolvent.


❖ For large  ,  gives an approximate inverse to , so  


❖ Using Fredholm theory, this has meromorphic continuation to , now as a function 
. 


❖ The poles of this continuation are called (scattering) resonances. I will assume that they 
are simple on the next slide.


❖ Theorem:  is a resonance iff  for some non-zero, outgoing  (outgoing in 
the sense before or, equivalently, in the range of ).

❖ Theorem: if  is not a resonance, then   is the unique outgoing solution to


 

(−τ2 − Δ + V )

P(τ)

u = f, V ∈ L∞
c (ℝ3, ℂ)

P(τ) R(τ)

Im τ R0(τ) R(τ)

R(τ) = (−τ2 − Δ + V )−1 : L2(ℝ3) → H2(ℝ3), Im τ ≫ 1

τ ∈ ℂ
R(τ) : L2

c (ℝ3) → H2
loc(ℝ

3)

τ ≠ 0 P(τ)u = 0 u
R0(τ)

τ u = R(τ)f

P(τ)u = f, f ∈ L2
c (ℝ3)



Resonance Expansions

❖ For  large enough, we can make sense of our Fourier 
inversion as an element of .

❖ Contour shifting needs more care, but one can get estimates 
within resonance-free regions and choose a witty contour to 
show that for any  we have a finite sum 


❖

❖

Im τ
L2

loc(ℝ
+, L2(ℝ3))

A > 0,

u(t, x) = ∑
Im τj>−A

e−iτjtaj(x) + EA(t), EA = 𝒪H2
loc

(e−tA)

τj = resonances, aj = resonant states, e−iτjtaj = residues

Re τj = rate of oscillation, − Im τj = rate of decay



Resonances with Different Potentials

❖ Suppose that  is real-valued 
(generally what we care about).


❖ Resonances with positive 
imaginary part are purely 
imaginary and their squares    
are eigenvalues of .

❖ There are no non-zero real 
resonances (Rellich).

V

−Δ + V
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Credit: David Bindel’s code



Resonances with Different Potentials

❖ If , then all non-zero 
resonances have negative 
imaginary part.

V ≥ 0
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Resonances with Different Potentials

❖ If   and  on an 
open set, then there are no 
real resonances.


❖ Via the resonance expansion, 
this implies exponential 
decay of the wave equation 
within compact sets.

V ≥ 0 V > 0

Credit: David Bindel’s code
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Resonance Expansions In Geometric Scattering

❖ De Sitter space: hyperbolic model of the universe ( )


❖ Follows “similar” general procedure


❖ Black holes, even those with sufficiently small angular momentum (Kerr, 
Kerr-de Sitter)


❖ “Quasi-normal modes”


❖ Follows “similar” general procedure


❖ Hard 


❖ Trapping affects high frequency (large ) estimates, loss of 
information


❖ References: see various papers by András Vasy, Peter Hintz, and Semyon 
Dyatlov 

Λ > 0

|Re τ |



Other Areas of Interest with Resonances

❖ Counting them


❖ Compare to Weyl law for counting eigenvalues


❖ Very open area (asymptotics, lower bounds)


❖ Distribution of resonances/resonance-free regions 


❖ Related to resonance expansions


❖ Trace formulas


❖ Related to counting resonances (e.g. lower bounds)



Some References

❖ Dyatlov and Zworski -  Mathematical Theory of Scattering 
Resonances

❖ Reed and Simon - Methods of Modern Mathematical 
Physics, Vol. 3: Scattering Theory 


❖ Taylor - Partial Differential Equations II: Qualitative Studies 
of Linear Equations (see Ch. 9 for scattering by obstacles)


❖ Hörmander - The Analysis of Linear Partial Differential 
Operators II: Differential Operators with Constant 
Coefficients (see Ch. XIV)



