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+ Wave equation on R, x R?:

Ela=:0
u(0,x) = f(x)
| 0,4(0.%) = g(x)

A\

» Damped wave equation on R, x R?:

f [Ju+ax)ou=0

u(0,x) = f(x)
0u(0,x) = g(x)

V.

where a is smooth and non-negative.



Suppose that
Fln =0, [lv+ax)oy =0

For every t, u(t, x) and v(, x) are zero for large | x|
1
Define E[w](?) = 5 J | ow |2 dx, g=d v

(Vt > 0)E[u](®) = E[u](0), and E[v](?) is non-increasing in ¢
Proof: Integrate d,u [ ] u in space and time, then integrate by parts. Same for v.
Conclusions

Solutions to the wave equation keep the same energy:.

Solutions to the damped wave equation lose energy.

Focus on the wave equation for now
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¢

Although energy is conserved for solutions to the wave equation, it will decay within
compact spatial sets.




Local Energy Decay Heuristic Il

Heuristic: If ii is a wave packet, then by finite speed of propagation,

§

J | 9ii |2 dxdt<Rsup ‘ |9ii |> dx < RE[i](0)
|<R

|[x|<R




Morawetz Estimate | I’I,TI

* Theorem (Morawetz): If n > 3, then

T
| Wul®
J dxdt S E[u](0),

I

0 R"

-V

where V =£dr+ Y, 0r:£
r 7

1
v Poofideaforn = 3 Multiply Flluby Ou = Cou-ton -t —u
r
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[ J [Juo,u dxdt = Time boundary terms —
0

T
J 0 ((0.u)?) dxdt + J [ Vu - Voudxdt
R3 0

R3

=
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Next,

3

T
2 1J[¢m%
dxdt — —
2 r2
0 R?

— then we get

T T
U ; | 0,(u?)
[ ]u— dxdt = Time boundary terms — —
r 2 -
0 0R?

R3

[ 1Vl <a>2
m+J[ < g
0OR

s T
¥
— 0= [ [ [ JuQu dxdt = Time boundary terms + [ [ | ¥y
0 0 R3

R3

If we take Q = Co,u + f(r)0,u +

n—1
f(r)u, where f(r) =
7

sup (”(X) 1/2au||L2 ([0,00)% { {x)~27}) AE ” <x> 3/2u”L2 ([0, oo)X{(x)NZJ})> 5 E[M](O),
j>0

provided n > 3. This is called an integrated local energy estimate.

» Note: (x) := (1 + |x|*)"2
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» Utility:

* Scattering theory
* Important measure of dispersion
- Global-in-time Strichartz estimates
o Nullpra S Il + Ngll s for admissible p, g, 7
» Pointwise decay estimates
lu(t, )| 5,77
> Long-time existence for nonlinear waves

» E.g.[Ju = O(du, 0°u)
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Recall estimate

—-1/2 2 =3/2..112
D <”<x> Ol prp(r0comitmmany T 1492 ””LzL;([o,oo>x{<x>~zj})> S E[ul(0),
=

Set

g —1/2
el L= sup 1<) ™ “uell 2 (10,000 ()2
j20

|l = lloull g+ || <x>_1u”LE

0
e 12
leellgs:= D 140) el 2 10,00y yih)
=0

Above estimate becomes ||u||%E1 < E[u](0)

Local energy decay (LED) estimate:

lull g1 + ”au”LtooLg S [lou(0)|[ 2 + ||f||LE*+L}L§-



Obstructions to LED

1. Trapping: null geodesics stay in a compact set forever
» Example: black holes
* Trapping implies no LED

- Can recover weaker LED statements for certain types
of trapping

______

2. Bad spectrum
* Negative eigenfunctions (yield exponential growth in time)
* Real resonances (more subtle growth)

+ Non-zero resonances/embedded eigenvalues (don’t occur for symmetric
operators)

+ Zero resonance/eigenvalue

Related problem: Can we recover LED if we use damping to control the trapping?
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Damped Waves and eometric Control Thi
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Geometric control condition (GCC): every bounded null geodesic intersects {a > 0}

First introduced by Rauch and Taylor ("75) to establish exponential decay for
hyperbolic equations on compact product manifolds without boundary

E[u](®) < e *E[u](0), a>0

Sy

Example of geometric control



Add in space-time geometry
(R g) sen(g) =( )
Damped wave operator
P =D g%D,+iaD,

g e C 2 (R?) non-negative and

positive on an open set
Assumptions: g e

Bouclet and Royer ('14) showed LED for damped waves on asymptotically (ie.
) manifolds satisfying GCC

Metrics of the form —dt* + gl-jdxi ® dx’/
Induce damped wave operators —D? + D,g" D; +ia(x)D,

Famous example of metric with non-product structure:



Main Theorem: LED I;T:ﬁ
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Theorem: Suppose that P is a stationary, asymptotically flat damped wave operator satisfying
the geometric control condition, and let d, be uniformly time-like. Then, we have the estimate

||M||LEl[o,T] s ”au”LtooLg[o,T] S [lou(0)|| 2 + ||PM||LE*+L,1L§[O,T]’

and the implicit constant is independent of 7.

Will follow outline of Metcalfe, Sterbenz, and Tataru ('20) (waves on non-trapping, Lorentzian
space-times); modifications via Bouclet and Royer arguments where trapping takes effect

General strategy:
1. Prove high, medium, and low frequency estimates
2. Combine together to prove that
lull e S N1Pull g, u € SRY

3. Prove that this implies LED by constructing a function which matches the Cauchy data of u
at times 0 and 7.



High Frequency Estimate |T,T|
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* Big idea: want an estimate that implies LED for time frequencies in a neighborhood
of infinity
» Trapping is high frequency

* Theorem: Suppose that P is a stationary, asymptotically flat damped wave operator

satisfying the geometric control condition, and let d, be uniformly time-like. Then,
we have the estimate

5
el Lerjo.ry + 10Ul op2i0.r) S 110u(O)| L2+ 1140wl Liggo 1 WPU L4 L1 20,775

and the constant is independent of 7.



Proof Idea | ﬁ
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Want to use positive commutator argument and pseudodifferential calculus to
complete proof

For self-adjoint P
2i P Ou = (P Ol )
Want Q so that quadratic form is positive up to lower-order errors
Via microlocal methods, want a symbol g so that {p, g} > 0

Damping is skew-adjoint: generate anti-commutators which turn into function
multiplication via microlocal analysis

So, we want symbols which give appropriate positivity

* Just like for flat LED, we need to construct a primary symbol (escape function) and a

correction symbol



Proof ldea Il ﬁ?ﬁ
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Construct symbols in steps:

1) On the characteristic set

this is where geometric

. . : i s i
D) Interior ({ | x| £ R}) points along semi-bounded geodesics ey

ID) Remainder of interior region
l1D Exterior region { | x| > R}
2) On the elliptic set



Low Frequency Estimate |T,T|
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- Big idea: want estimate that implies LED in a neighborhood of zero frequency

. LetPy= P‘D_O = DD,

* 0, uniformly time-like = P uniformly elliptic = no resonance at zero

+ Theorem: Suppose that P is an asymptotically flat damped wave operator, and let 9,

be uniformly time-like. Then, we have the estimate

lull g1 S “ar”“LEg + || Pul| g+

> Proof idea

Establish weighted estimates for A
Use perturbation arguments to get weighted estimates for P,

Integrate in time



R
L X4

L)

<,

L X4

Medium Frequency Estimate ﬁ

Big idea: want estimate that implies LED for any range of time frequencies bounded
away from zero and infinity

Built on Carleman estimates
lpoe?ull 22 + llpre®oull 22 S lle?Pull 2y
Overall proof idea

Exterior 2
*  Get Carleman estimate outside of compact set

Transition

“ Bend Weight to apply exterior estimate

*  Get Carleman estimate within compact set Exteriort

K72
L X4

Combine together

Proof idea for a Carleman estimate: Positive
commutator arguments on conjugated
operator P, = e?Pe™?




Spectral Theory

* Another approach: Spectral theory

+ Define &, £&' by removing time dependence, and

vE —en el se
e el

»* Consider Pu = 0, u(0) =0, — g%u0) =71

- Using Fourier-Laplace transform, define R f = J u(t)e'™" dt

0

* Using energy coercivity, get uniform resolvent bound

IR, Al S Mmoo | 'Ifll,  {Ime <0}
» LED holds iff local energy resolvent bound holds:
IRofll gt S Ifll ggs  {Imew <0}
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