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The Wave and Damped Equations

❖ Let      

❖ Wave equation on : 

❖ Damped wave equation on :

where  is smooth and non-negative.
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ℝ+ × ℝ3

□ u = 0
u(0,x) = f(x)

∂tu(0,x) = g(x)

ℝ+ × ℝ3

□ u + a(x)∂tu = 0
u(0,x) = f(x)

∂tu(0,x) = g(x)
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Global Energy Bounds

❖ Suppose that 

❖

❖ For every ,  and  are zero for large 

❖ Define 

❖ , and  is non-increasing in  

❖ Proof: Integrate  in space and time, then integrate by parts. Same for .

❖ Conclusions 
❖ Solutions to the wave equation keep the same energy.
❖ Solutions to the damped wave equation lose energy.

Focus on the wave equation for now

□ u = 0, □ v + a(x)∂tv = 0

t u(t, x) v(t, x) |x |

E[w](t) =
1
2 ∫ |∂w |2 dx, ∂ = (∂t, ∇x)

(∀t ≥ 0)E[u](t) = E[u](0) E[v](t) t

∂tu □ u v



Local Energy Decay Heuristic I

Although energy is conserved for solutions to the wave equation, it will decay within 
compact spatial sets.  
 



Local Energy Decay Heuristic II

Heuristic: If  is a wave packet, then by finite speed of propagation,
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|∂ũ |2 dx ≲ RE[ũ](0)
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Morawetz Estimate I
❖ Theorem (Morawetz): If , then

 , 

where 

❖ Proof idea for : Multiply  by 
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Morawetz Estimate II + Local Energy Decay I

❖  Next, 

❖ If we take , where  , then we get

,   

provided . This is called an integrated local energy estimate.

❖ Note: 
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(∥⟨x⟩−1/2∂u∥2
L2
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Local Energy Decay for the Wave Equation II

❖ Utility:

❖ Scattering theory

❖ Important measure of dispersion 

❖ Global-in-time Strichartz estimates

❖  for admissible 

❖ Pointwise decay estimates

❖

❖ Long-time existence for nonlinear waves

❖ E.g.  

∥u∥Lp
t Lq

x
≲ ∥f∥ ·Hr + ∥g∥ ·Hr−1 p, q, r

|u(t, x) | ≲x t−α

□ u = Q(∂u, ∂2u)



Local Energy Decay for the Wave Equation III
❖ Recall estimate

,    

❖ Set

 

❖ Above estimate becomes 

❖ Local energy decay (LED) estimate:

sup
j≥0 (∥⟨x⟩−1/2∂u∥2

L2
t L2

x([0,∞)×{⟨x⟩≈2 j}) + ∥⟨x⟩−3/2u∥2
L2

t L2
x([0,∞)×{⟨x⟩≈2 j})) ≲ E[u](0)

∥u∥LE:= sup
j≥0

∥⟨x⟩−1/2u∥L2
t,x([0,∞)×{⟨x⟩≈2 j})

∥u∥LE1:= ∥∂u∥LE + ∥⟨x⟩−1u∥LE

∥u∥LE*:=
∞

∑
j=0

∥⟨x⟩1/2u∥L2
t,x([0,∞)×{⟨x⟩≈2 j})

∥u∥2
LE1 ≲ E[u](0)

∥u∥LE1 + ∥∂u∥L∞
t L2

x
≲ ∥∂u(0)∥L2 + ∥f∥LE*+L1

t L2
x
.



Obstructions to LED 
1. Trapping: null geodesics stay in a compact set forever 

❖ Example: black holes

❖ Trapping implies no LED 

❖ Can recover weaker LED statements for certain types  
of trapping

2. Bad spectrum

❖ Negative eigenfunctions (yield exponential growth in time)

❖ Real resonances (more subtle growth)

❖ Non-zero resonances/embedded eigenvalues (don’t occur for symmetric 
operators)

❖ Zero resonance/eigenvalue

Related problem: Can we recover LED if we use damping to control the trapping?



Damped Waves and Geometric Control 

❖ Geometric control condition (GCC): every bounded null geodesic intersects  

❖ First introduced by Rauch and Taylor (’75) to establish exponential decay for 
hyperbolic equations on compact product manifolds without boundary

{a > 0}

E[u](t) ≲ e−αtE[u](0), α > 0

Example of geometric control

supp( )a



Adding in Space-Time Geometry

Add in space-time geometry

❖  Lorentzian, 

❖ Damped wave operator

 non-negative and  
positive on an open set

❖ Assumptions:  asymptotically flat,  stationary

❖ Bouclet and Royer (’14) showed LED for damped waves on asymptotically Euclidean (i.e. 
product) manifolds satisfying GCC

❖ Metrics of the form 

❖ Induce damped wave operators 

❖ Famous example of metric with non-product structure: Kerr space-time

(ℝ4, g) sgn(g) = ( − + + + )

P = DαgαβDβ + iaDt

a ∈ C∞
c (ℝ3)

g P

−dt2 + gijdxi ⊗ dxj

−D2
t + DigijDj + ia(x)Dt



Main Theorem: LED

Theorem: Suppose that  is a stationary, asymptotically flat damped wave operator satisfying 
the geometric control condition, and let  be uniformly time-like. Then, we have the estimate

and the implicit constant is independent of .

 
Will follow outline of Metcalfe, Sterbenz, and Tataru (’20) (waves on non-trapping, Lorentzian 
space-times); modifications via Bouclet and Royer arguments where trapping takes effect 

General strategy:
1. Prove high, medium, and low frequency estimates
2. Combine together to prove that

3. Prove that this implies LED by constructing a function which matches the Cauchy data of  
at times  and .

P
∂t

∥u∥LE1[0,T ] + ∥∂u∥L∞
t L2

x [0,T ] ≲ ∥∂u(0)∥L2 + ∥Pu∥LE*+L1
t L2

x [0,T ],

T

∥u∥LE1 ≲ ∥Pu∥LE*, u ∈ 𝒮(ℝ4)
u

0 T



High Frequency Estimate

❖ Big idea: want an estimate that implies LED for time frequencies in a neighborhood 
of infinity    

❖ Trapping is high frequency
❖ Theorem: Suppose that  is a stationary, asymptotically flat damped wave operator 

satisfying the geometric control condition, and let  be uniformly time-like. Then, 
we have the estimate

and the constant is independent of .

P
∂t

∥u∥LE1[0,T] + ∥∂u∥L∞
t L2

x [0,T] ≲ ∥∂u(0)∥L2+∥⟨x⟩−2u∥LE[0,T]+∥Pu∥LE*+L1
t L2

x [0,T],

T



Proof Idea I

❖ Want to use positive commutator argument and pseudodifferential calculus to 
complete proof

❖ For self-adjoint  

       
❖ Want  so that quadratic form is positive up to lower-order errors

❖  Via microlocal methods, want a symbol  so that 
❖ Damping is skew-adjoint: generate anti-commutators which turn into function 

multiplication via microlocal analysis
❖ So, we want symbols which give appropriate positivity

❖ Just like for flat LED, we need to construct a primary symbol (escape function) and a 
correction symbol

P
2iIm⟨Pu, Qu⟩ = ⟨[P, Q]u, u⟩

Q
q {p, q} > 0



Proof Idea II

❖ Construct symbols in steps:

1) On the characteristic set 

I)   Interior ( ) points along semi-bounded geodesics   

II)  Remainder of interior region

III) Exterior region 

2) On the elliptic set

{ |x | ≤ R} ←

{ |x | > R}

this is where geometric 
control is used



Low Frequency Estimate

❖ Big idea: want estimate that implies LED in a neighborhood of zero frequency

❖
Let 

❖  uniformly time-like   uniformly elliptic  no resonance at zero
❖ Theorem: Suppose that  is an asymptotically flat damped wave operator, and let  

be uniformly time-like. Then, we have the estimate

               

❖ Proof idea
❖  Establish weighted estimates for 
❖  Use perturbation arguments to get weighted estimates for 
❖  Integrate in time

P0 = P
Dt=0

= DigijDj

∂t ⟹ P0 ⟹
P ∂t

∥u∥LE1 ≲ ∥∂tu∥LE1
c

+ ∥Pu∥LE*.

Δ
P0



Medium Frequency Estimate

❖ Big idea: want estimate that implies LED for any range of time frequencies bounded 
away from zero and infinity

❖ Built on Carleman estimates

❖ Overall proof idea
❖  Get Carleman estimate outside of compact set

❖  Bend weight to apply exterior estimate
❖  Get Carleman estimate within compact set
❖  Combine together

❖ Proof idea for a Carleman estimate: Positive  
commutator arguments on conjugated  
operator 

∥ρ0eφu∥L2
t L2

x
+ ∥ρ1eφ∂u∥L2

t L2
x

≲ ∥eφPu∥L2
t L2

x

Pφ = eφPe−φ



Spectral Theory

❖ Another approach: Spectral theory
❖ Define  by removing time dependence, and

❖ Consider 

❖ Using Fourier-Laplace transform, define 

❖ Using energy coercivity, get uniform resolvent bound

 

❖ LED holds iff local energy resolvent bound holds:

ℒℰ, ℒℰ1

ℒℰ1
ω = ℒℰ ∩ |ω |−1 ℒℰ2

·H1
ω = ·H1 ∩ |ω |−1 L2

Pu = 0, u(0) = 0, − g00∂tu(0) = f

Rω f =
∞

∫
0

u(t)eiωt dt

∥Rω f∥ ·H1
ω

≲ | Im ω |−1∥f∥L2, {Im ω < 0}

∥Rω f∥ℒℰ1
ω

≲ ∥f∥ℒℰ*, {Im ω < 0}
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